Displaying 1-2 of 2 results found.
page
1
1, -1, -2, 0, 8, 0, -32, 0, 128, 0, -512, 0, 2048, 0, -8192, 0, 32768, 0, -131072, 0, 524288, 0, -2097152, 0, 8388608, 0, -33554432, 0, 134217728, 0, -536870912, 0, 2147483648, 0, -8589934592, 0, 34359738368, 0, -137438953472, 0, 549755813888, 0, -2199023255552
Table read by rows, coefficients of the characteristic polynomials of the tangent matrices.
+10
7
1, 0, 1, -1, 0, 1, 2, -1, -2, 1, 1, 0, -6, 0, 1, 4, 9, -4, -10, 0, 1, -1, 0, 15, 0, -15, 0, 1, 14, -1, -46, 19, 34, -19, -2, 1, 1, 0, -28, 0, 70, 0, -28, 0, 1, 40, 81, -88, -196, 56, 150, -8, -36, 0, 1, -1, 0, 45, 0, -210, 0, 210, 0, -45, 0, 1
COMMENTS
The tangent matrix M(n, k) is an N X N matrix defined with h = floor((N+1)/2) as:
M[n - k, k + 1] = if n < h then 1 otherwise -1,
M[N - n + k + 1, N - k] = if n < N - h then -1 otherwise 1,
for n in [1..N-1] and for k in [0..n-1], and 0 in the main antidiagonal.
The name 'tangent matrix' derives from M(n, k) = signum(tan(Pi*(n + k)/(N + 1))) whenever the right side of this equation is defined.
FORMULA
The rows with even index equal those of A135670.
The determinants of tangent matrices with even dimension are A152011.
EXAMPLE
Table starts:
[0] 1;
[1] 0, 1;
[2] -1, 0, 1;
[3] 2, -1, -2, 1;
[4] 1, 0, -6, 0, 1;
[5] 4, 9, -4, -10, 0, 1;
[6] -1, 0, 15, 0, -15, 0, 1;
[7] 14, -1, -46, 19, 34, -19, -2, 1;
[8] 1, 0, -28, 0, 70, 0, -28, 0, 1;
[9] 40, 81, -88, -196, 56, 150, -8, -36, 0, 1.
.
The first few tangent matrices:
1 2 3 4 5
---------------------------------------------------------------
0; -1 0; 1 -1 0; 1 -1 -1 0; 1 1 -1 -1 0;
0 1; -1 0 1; -1 -1 0 1; 1 -1 -1 0 1;
0 1 1; -1 0 1 1; -1 -1 0 1 1;
0 1 1 -1; -1 0 1 1 1;
0 1 1 1 -1;
MAPLE
TangentMatrix := proc(N) local M, H, n, k;
M := Matrix(N, N); H := iquo(N + 1, 2);
for n from 1 to N - 1 do for k from 0 to n - 1 do
M[n - k, k + 1] := `if`(n < H, 1, -1);
M[N - n + k + 1, N - k] := `if`(n < N - H, -1, 1);
od od; M end:
A346831Row := proc(n) if n = 0 then return 1 fi;
LinearAlgebra:-CharacteristicPolynomial(TangentMatrix(n), x);
seq(coeff(%, x, k), k = 0..n) end:
seq(A346831Row(n), n = 0..10);
MATHEMATICA
TangentMatrix[N_] := Module[{M, H, n, k},
M = Array[0&, {N, N}]; H = Quotient[N + 1, 2];
For[n = 1, n <= N - 1, n++, For[k = 0, k <= n - 1, k++,
M[[n - k, k + 1]] = If[n < H, 1, -1];
M[[N - n + k + 1, N - k]] = If[n < N - H, -1, 1]]]; M];
A346831Row[n_] := Module[{c}, If[n == 0, Return[{1}]];
c = CharacteristicPolynomial[TangentMatrix[n], x];
(-1)^n*CoefficientList[c, x]];
PROG
(Julia)
using AbstractAlgebra
function TangentMatrix(N)
M = zeros(ZZ, N, N)
H = div(N + 1, 2)
for n in 1:N - 1
for k in 0:n - 1
M[n - k, k + 1] = n < H ? 1 : -1
M[N - n + k + 1, N - k] = n < N - H ? -1 : 1
end
end
M end
function A346831Row(n)
n == 0 && return [ZZ(1)]
R, x = PolynomialRing(ZZ, "x")
S = MatrixSpace(ZZ, n, n)
M = TangentMatrix(n)
c = charpoly(R, S(M))
collect(coefficients(c))
end
for n in 0:9 println(A346831Row(n)) end
Search completed in 0.007 seconds
|