[go: up one dir, main page]

login
Search: a346837 -id:a346837
     Sort: relevance | references | number | modified | created      Format: long | short | data
Alternating row sums of A346837.
+20
1
1, -1, -2, 0, 8, 0, -32, 0, 128, 0, -512, 0, 2048, 0, -8192, 0, 32768, 0, -131072, 0, 524288, 0, -2097152, 0, 8388608, 0, -33554432, 0, 134217728, 0, -536870912, 0, 2147483648, 0, -8589934592, 0, 34359738368, 0, -137438953472, 0, 549755813888, 0, -2199023255552
OFFSET
0,3
CROSSREFS
Cf. A346837.
KEYWORD
sign
AUTHOR
Peter Luschny, Sep 11 2021
STATUS
approved
Table read by rows, coefficients of the characteristic polynomials of the tangent matrices.
+10
7
1, 0, 1, -1, 0, 1, 2, -1, -2, 1, 1, 0, -6, 0, 1, 4, 9, -4, -10, 0, 1, -1, 0, 15, 0, -15, 0, 1, 14, -1, -46, 19, 34, -19, -2, 1, 1, 0, -28, 0, 70, 0, -28, 0, 1, 40, 81, -88, -196, 56, 150, -8, -36, 0, 1, -1, 0, 45, 0, -210, 0, 210, 0, -45, 0, 1
OFFSET
0,7
COMMENTS
The tangent matrix M(n, k) is an N X N matrix defined with h = floor((N+1)/2) as:
M[n - k, k + 1] = if n < h then 1 otherwise -1,
M[N - n + k + 1, N - k] = if n < N - h then -1 otherwise 1,
for n in [1..N-1] and for k in [0..n-1], and 0 in the main antidiagonal.
The name 'tangent matrix' derives from M(n, k) = signum(tan(Pi*(n + k)/(N + 1))) whenever the right side of this equation is defined.
FORMULA
The rows with even index equal those of A135670.
The determinants of tangent matrices with even dimension are A152011.
EXAMPLE
Table starts:
[0] 1;
[1] 0, 1;
[2] -1, 0, 1;
[3] 2, -1, -2, 1;
[4] 1, 0, -6, 0, 1;
[5] 4, 9, -4, -10, 0, 1;
[6] -1, 0, 15, 0, -15, 0, 1;
[7] 14, -1, -46, 19, 34, -19, -2, 1;
[8] 1, 0, -28, 0, 70, 0, -28, 0, 1;
[9] 40, 81, -88, -196, 56, 150, -8, -36, 0, 1.
.
The first few tangent matrices:
1 2 3 4 5
---------------------------------------------------------------
0; -1 0; 1 -1 0; 1 -1 -1 0; 1 1 -1 -1 0;
0 1; -1 0 1; -1 -1 0 1; 1 -1 -1 0 1;
0 1 1; -1 0 1 1; -1 -1 0 1 1;
0 1 1 -1; -1 0 1 1 1;
0 1 1 1 -1;
MAPLE
TangentMatrix := proc(N) local M, H, n, k;
M := Matrix(N, N); H := iquo(N + 1, 2);
for n from 1 to N - 1 do for k from 0 to n - 1 do
M[n - k, k + 1] := `if`(n < H, 1, -1);
M[N - n + k + 1, N - k] := `if`(n < N - H, -1, 1);
od od; M end:
A346831Row := proc(n) if n = 0 then return 1 fi;
LinearAlgebra:-CharacteristicPolynomial(TangentMatrix(n), x);
seq(coeff(%, x, k), k = 0..n) end:
seq(A346831Row(n), n = 0..10);
MATHEMATICA
TangentMatrix[N_] := Module[{M, H, n, k},
M = Array[0&, {N, N}]; H = Quotient[N + 1, 2];
For[n = 1, n <= N - 1, n++, For[k = 0, k <= n - 1, k++,
M[[n - k, k + 1]] = If[n < H, 1, -1];
M[[N - n + k + 1, N - k]] = If[n < N - H, -1, 1]]]; M];
A346831Row[n_] := Module[{c}, If[n == 0, Return[{1}]];
c = CharacteristicPolynomial[TangentMatrix[n], x];
(-1)^n*CoefficientList[c, x]];
Table[A346831Row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 15 2024, after Peter Luschny *)
PROG
(Julia)
using AbstractAlgebra
function TangentMatrix(N)
M = zeros(ZZ, N, N)
H = div(N + 1, 2)
for n in 1:N - 1
for k in 0:n - 1
M[n - k, k + 1] = n < H ? 1 : -1
M[N - n + k + 1, N - k] = n < N - H ? -1 : 1
end
end
M end
function A346831Row(n)
n == 0 && return [ZZ(1)]
R, x = PolynomialRing(ZZ, "x")
S = MatrixSpace(ZZ, n, n)
M = TangentMatrix(n)
c = charpoly(R, S(M))
collect(coefficients(c))
end
for n in 0:9 println(A346831Row(n)) end
CROSSREFS
Cf. A135670, A152011, A346837 (generalized tangent matrix).
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Sep 11 2021
STATUS
approved

Search completed in 0.007 seconds