[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a332181 -id:a332181
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 8*(10^(2n+1)-1)/9 - 8*10^n.
+10
11
0, 808, 88088, 8880888, 888808888, 88888088888, 8888880888888, 888888808888888, 88888888088888888, 8888888880888888888, 888888888808888888888, 88888888888088888888888, 8888888888880888888888888, 888888888888808888888888888, 88888888888888088888888888888, 8888888888888880888888888888888
OFFSET
0,2
FORMULA
a(n) = 8*A138148(n) = A002282(2n+1) - 8*10^n.
G.f.: 8*x*(101 - 200*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
E.g.f.: 8*exp(x)*(10*exp(99*x) - 9*exp(9*x) - 1)/9. - Stefano Spezia, Jul 13 2024
MAPLE
A332180 := n -> 8*((10^(2*n+1)-1)/9-10^n);
MATHEMATICA
Array[8 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
PROG
(PARI) apply( {A332180(n)=(10^(n*2+1)\9-10^n)*8}, [0..15])
(Python) def A332180(n): return (10**(n*2+1)//9-10**n)*8
CROSSREFS
Cf. A002275 (repunits R_n = (10^n-1)/9), A002282 (8*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332120 .. A332190 (variants with different repeated digit 2, ..., 9).
Cf. A332181 .. A332189 (variants with different middle digit 1, ..., 9).
Subsequence of A006072 (numbers with mirror symmetry about middle), A153806 (strobogrammatic cyclops numbers), and A204095 (numbers whose decimal digits are in {0,8}).
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 08 2020
STATUS
approved
a(n) = 10^(2n+1) - 1 - 8*10^n.
+10
9
1, 919, 99199, 9991999, 999919999, 99999199999, 9999991999999, 999999919999999, 99999999199999999, 9999999991999999999, 999999999919999999999, 99999999999199999999999, 9999999999991999999999999, 999999999999919999999999999, 99999999999999199999999999999, 9999999999999991999999999999999
OFFSET
0,2
COMMENTS
See A183184 = {1, 5, 13, 43, 169, 181, ...} for the indices of primes.
LINKS
Patrick De Geest, Palindromic Wing Primes: (9)1(9), updated: June 25, 2017.
Makoto Kamada, Factorization of 9999199...99, updated Dec 11 2018.
FORMULA
a(n) = 9*A138148(n) + 10^n.
G.f.: (1 + 808*x - 1700*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332191 := n -> 10^(n*2+1)-1-8*10^n;
MATHEMATICA
Array[ 10^(2 # + 1)-1-8*10^# &, 15, 0]
PROG
(PARI) apply( {A332191(n)=10^(n*2+1)-1-8*10^n}, [0..15])
(Python) def A332191(n): return 10**(n*2+1)-1-8*10^n
CROSSREFS
Cf. (A077776-1)/2 = A183184: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002283 (9*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332121 .. A332181 (variants with different repeated digit 2, ..., 8).
Cf. A332190 .. A332197, A181965 (variants with different middle digit 0, ..., 8).
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 08 2020
STATUS
approved

Search completed in 0.006 seconds