Displaying 1-8 of 8 results found.
page
1
Denominator: factorizations divided by strict factorizations A001055(n)/ A045778(n).
+10
9
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 7, 1, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 9, 1, 1, 3, 4, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 3, 3, 1, 1, 1, 7, 2, 1, 1, 9, 1, 1, 1, 5, 1, 9, 1, 3, 1, 1, 1, 10, 1, 3, 3, 5, 1, 1, 1, 5, 1
COMMENTS
A factorization of n is a finite, nondecreasing sequence of positive integers > 1 with product n. It is strict if the factors are all different. Factorizations and strict factorizations are counted by A001055 and A045778 respectively.
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[facs[n]]/Length[Select[facs[n], UnsameQ@@#&]], {n, 100}]//Denominator
PROG
(PARI)
A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
A045778(n, m=n) = ((n<=m) + sumdiv(n, d, if((d>1)&&(d<=m)&&(d<n), A045778(n/d, d-1))));
CROSSREFS
Positions of 1's include all elements of A001248 as well as A005117. The first position of a 1 that is not in A167207 is 128.
The same for integer partitions is A330995.
Cf. A001055, A005117, A045778, A045779, A045780, A045782, A045783, A325755, A326028, A326622, A328966, A330972, A330977, A330991.
Least number with each record number of factorizations into distinct factors > 1.
+10
7
1, 6, 12, 24, 48, 60, 96, 120, 180, 240, 360, 480, 720, 840, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 4320, 5040, 7560, 8640, 10080, 15120, 20160, 25200, 30240, 40320, 45360, 50400, 55440, 60480, 75600, 90720, 100800, 110880, 120960, 151200, 181440, 221760
COMMENTS
First differs from A330997 in lacking 64.
EXAMPLE
Strict factorizations of the initial terms:
() (6) (12) (24) (48) (60) (96) (120)
(2*3) (2*6) (3*8) (6*8) (2*30) (2*48) (2*60)
(3*4) (4*6) (2*24) (3*20) (3*32) (3*40)
(2*12) (3*16) (4*15) (4*24) (4*30)
(2*3*4) (4*12) (5*12) (6*16) (5*24)
(2*3*8) (6*10) (8*12) (6*20)
(2*4*6) (2*5*6) (2*6*8) (8*15)
(3*4*5) (3*4*8) (10*12)
(2*3*10) (2*3*16) (3*5*8)
(2*4*12) (4*5*6)
(2*3*20)
(2*4*15)
(2*5*12)
(2*6*10)
(3*4*10)
(2*3*4*5)
MATHEMATICA
nn=1000;
strfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[strfacs[n/d], Min@@#>d&]], {d, Rest[Divisors[n]]}]];
qv=Table[Length[strfacs[n]], {n, nn}];
Table[Position[qv, i][[1, 1]], {i, Union[qv//.{foe___, x_, y_, afe___}/; x>y:>{foe, x, afe}]}]
CROSSREFS
This is the strict version of highly factorable numbers A033833.
The least number with n strict factorizations is A330974(n).
1, 1, 2, 3, 5, 7, 11, 3, 11, 15, 21, 14, 77, 101, 135, 176, 231, 297, 385, 245, 627, 198, 1002, 1255, 1575, 979, 812, 1505, 1859, 4565, 1401, 3421, 2783, 1449, 6155, 4961, 17977, 21637, 26015, 31185, 1778, 2123, 26587, 63261, 75175, 44567, 17593, 8911, 49091
COMMENTS
An integer partition of n is a finite, nonincreasing sequence of positive integers (parts) summing to n. It is strict if the parts are all different. Integer partitions and strict integer partitions are counted by A000041 and A000009 respectively.
MATHEMATICA
Table[PartitionsP[n]/PartitionsQ[n], {n, 0, 100}]//Numerator
CROSSREFS
The same for factorizations is A331023.
Record numbers of factorizations into distinct factors > 1.
+10
6
1, 2, 3, 5, 7, 9, 10, 16, 18, 25, 34, 38, 57, 59, 67, 70, 91, 100, 117, 141, 161, 193, 253, 296, 306, 426, 552, 685, 692, 960, 1060, 1067, 1216, 1220, 1589, 1591, 1912, 2029, 2157, 2524, 2886, 3249, 3616, 3875, 4953, 5147, 5285, 5810, 6023, 6112, 6623, 8129
EXAMPLE
Representatives for the initial records and their strict factorizations:
() (6) (12) (24) (48) (60) (96) (120)
(2*3) (2*6) (3*8) (6*8) (2*30) (2*48) (2*60)
(3*4) (4*6) (2*24) (3*20) (3*32) (3*40)
(2*12) (3*16) (4*15) (4*24) (4*30)
(2*3*4) (4*12) (5*12) (6*16) (5*24)
(2*3*8) (6*10) (8*12) (6*20)
(2*4*6) (2*5*6) (2*6*8) (8*15)
(3*4*5) (3*4*8) (10*12)
(2*3*10) (2*3*16) (3*5*8)
(2*4*12) (4*5*6)
(2*3*20)
(2*4*15)
(2*5*12)
(2*6*10)
(3*4*10)
(2*3*4*5)
MATHEMATICA
nn=1000;
strfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[strfacs[n/d], Min@@#>d&]], {d, Rest[Divisors[n]]}]];
qv=Table[Length[strfacs[n]], {n, nn}];
Union[qv//.{foe___, x_, y_, afe___}/; x>y:>{foe, x, afe}]
PROG
(Python)
def fact(num):
....ret = []
....temp = num
....div = 2
....while temp > 1:
........while temp % div == 0:
............ret.append(div)
............temp //= div
........div += 1
....return ret
def all_partitions(lst):
....if lst:
........x = lst[0]
........for partition in all_partitions(lst[1:]):
............yield [x] + partition
............for i, _ in enumerate(partition):
................partition[i] *= x
................yield partition
................partition[i] //= x
....else:
........yield []
best = 0
terms = [0]
q = 2
while len(terms) < 100:
....total_set = set()
....factors = fact(q)
....total_set = set(tuple(sorted(x)) for x in all_partitions(factors) if len(x) == len(set(x)))
....if len(total_set) > best:
........best = len(total_set)
........terms.append(best)
........print(q, best)
....q += 2#only check evens
print(terms)
CROSSREFS
The least number with n strict factorizations is A330974(n).
Numbers k such that the number of factorizations of k into distinct factors > 1 is a prime number.
+10
5
6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 66, 68, 69, 70, 74, 75, 76, 77, 78, 80, 81, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 98, 99, 100, 102
COMMENTS
First differs from A080257 in lacking 60.
EXAMPLE
Strict factorizations of selected terms:
(6) (12) (24) (48) (216)
(2*3) (2*6) (3*8) (6*8) (3*72)
(3*4) (4*6) (2*24) (4*54)
(2*12) (3*16) (6*36)
(2*3*4) (4*12) (8*27)
(2*3*8) (9*24)
(2*4*6) (12*18)
(2*108)
(3*8*9)
(4*6*9)
(2*3*36)
(2*4*27)
(2*6*18)
(2*9*12)
(3*4*18)
(3*6*12)
(2*3*4*9)
MATHEMATICA
strfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[strfacs[n/d], Min@@#>d&]], {d, Rest[Divisors[n]]}]];
Select[Range[100], PrimeQ[Length[strfacs[#]]]&]
CROSSREFS
The version for strict integer partitions is A035359.
The version for integer partitions is A046063.
The version for set partitions is A051130.
Numbers whose number of strict factorizations is odd are A331230.
Numbers whose number of strict factorizations is even are A331231.
The least number with n strict factorizations is A330974(n).
Cf. A001318, A045780, A318286, A328966, A330992, A330993, A330997, A331023/ A331024, A331050, A331051, A331200, A331232.
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
COMMENTS
A factorization of n is a finite, nondecreasing sequence of positive integers > 1 with product n. It is strict if the factors are all different.
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Round[Length[facs[n]]/Length[Select[facs[n], UnsameQ@@#&]]], {n, 100}]
CROSSREFS
Cf. A001055, A001222, A002033, A005117, A045778, A045779, A045780, A045782, A045783, A330972, A330977, A330991.
Numbers k such that the number of factorizations of k into distinct factors > 1 is even.
+10
3
6, 8, 10, 14, 15, 16, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 64, 65, 69, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 96, 106, 111, 115, 118, 119, 120, 122, 123, 125, 129, 133, 134, 141, 142, 143, 144, 145, 146, 155, 158, 159, 160, 161, 166
COMMENTS
First differs from A319238 in having 300.
MATHEMATICA
strfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[strfacs[n/d], Min@@#>d&]], {d, Rest[Divisors[n]]}]];
Select[Range[100], EvenQ[Length[strfacs[#]]]&]
CROSSREFS
The version for integer partitions is A001560.
The version for strict integer partitions is A090864.
The version for set partitions appears to be A016789.
The version for primes (instead of evens) is A331201.
The least number with n strict factorizations is A330974(n).
Cf. A001318, A045780, A045783, A318286, A328966, A330973, A330991, A330997, A331022, A331023/ A331024, A331050, A331200, A331232.
Numbers n with exactly three times as many factorizations ( A001055) as strict factorizations ( A045778).
+10
0
128, 2187, 10368, 34992, 78125, 80000, 307328, 823543, 1250000, 1366875, 1874048, 3655808, 5250987, 6328125, 10690688, 13176688, 16681088, 19487171, 32019867, 35819648, 62462907, 62748517, 66706983, 90531968, 118210688, 182660427, 187578125, 239892608, 285012027
COMMENTS
Contains p^7 for all primes p.
EXAMPLE
The 15 factorizations and 5 strict factorizations of 2187:
(2187) (2187)
(27*81) (27*81)
(3*729) (3*729)
(9*243) (9*243)
(3*9*81) (3*9*81)
(9*9*27)
(3*27*27)
(3*3*243)
(3*9*9*9)
(3*3*3*81)
(3*3*9*27)
(3*3*3*9*9)
(3*3*3*3*27)
(3*3*3*3*3*9)
(3*3*3*3*3*3*3)
MATHEMATICA
facsm[n_]:=facsm[n]=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facsm[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Select[Range[100000], 3==Length[facsm[#]]/Length[Select[facsm[#], UnsameQ@@#&]]&]
CROSSREFS
Taking "twice" instead of "three times" gives A001248.
Search completed in 0.010 seconds
|