Displaying 1-10 of 10 results found.
page
1
Sorted list containing the least number with each possible nonzero number of factorizations into factors > 1.
+10
38
1, 4, 8, 12, 16, 24, 36, 48, 60, 72, 96, 120, 128, 144, 180, 192, 216, 240, 256, 288, 360, 384, 420, 432, 480, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1440, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2520, 2592, 2880, 3072, 3360, 3456, 3600
COMMENTS
This is the sorted list of positions of first appearances in A001055 of each element of the range ( A045782).
EXAMPLE
Factorizations of n for n = 4, 8, 12, 16, 24, 36, 48, 60:
4 8 12 16 24 36 48 60
2*2 2*4 2*6 2*8 3*8 4*9 6*8 2*30
2*2*2 3*4 4*4 4*6 6*6 2*24 3*20
2*2*3 2*2*4 2*12 2*18 3*16 4*15
2*2*2*2 2*2*6 3*12 4*12 5*12
2*3*4 2*2*9 2*3*8 6*10
2*2*2*3 2*3*6 2*4*6 2*5*6
3*3*4 3*4*4 3*4*5
2*2*3*3 2*2*12 2*2*15
2*2*2*6 2*3*10
2*2*3*4 2*2*3*5
2*2*2*2*3
MATHEMATICA
nn=1000;
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
nds=Length/@Array[facs, nn];
Table[Position[nds, i][[1, 1]], {i, First/@Gather[nds]}]
CROSSREFS
Includes all highly factorable numbers A033833.
The least number with n factorizations is A330973(n).
Cf. A001222, A002033, A007716, A045778, A318284, A325238, A330935, A330936, A330976, A330977, A330989, A330991, A330992.
Number of factorizations of n for some n (image of A001055).
+10
33
1, 2, 3, 4, 5, 7, 9, 11, 12, 15, 16, 19, 21, 22, 26, 29, 30, 31, 36, 38, 42, 45, 47, 52, 56, 57, 64, 66, 67, 74, 77, 92, 97, 98, 101, 105, 109, 118, 135, 137, 139, 141, 162, 165, 171, 176, 181, 189, 195, 198, 203, 212, 231, 249, 250, 254, 257, 267, 269, 272, 289
FORMULA
The Luca et al. paper shows that the number of terms with a(n) <= x is x^{ O( log log log x / log log x )}. - N. J. A. Sloane, Jun 12 2009
MATHEMATICA
terms = 61; m0 = 10^5; dm = 10^4;
f[1, _] = 1; f[n_, k_] := f[n, k] = Sum[f[n/d, d], {d, Select[Divisors[n], 1 < # <= k &]}];
Clear[seq]; seq[m_] := seq[m] = Sort[Tally[Table[f[n, n], {n, 1, m}]][[All, 1]]][[1 ;; terms]]; seq[m = m0]; seq[m += dm]; While[Print[m]; seq[m] != seq[m - dm], m += dm];
CROSSREFS
Factorizations are A001055 with image this sequence and complement A330976.
The least number with exactly a(n) factorizations is A045783(n).
The least number with exactly n factorizations is A330973(n).
Cf. A002033, A007716, A033833, A318284, A325238, A330935, A330936, A330977, A330989, A330991, A330992, A330997.
Least positive integer with exactly n factorizations into factors > 1, and 0 if no such number exists.
+10
26
1, 4, 8, 12, 16, 0, 24, 0, 36, 0, 60, 48, 0, 0, 128, 72, 0, 0, 96, 0, 120, 256, 0, 0, 0, 180, 0, 0, 144, 192, 216, 0, 0, 0, 0, 420, 0, 240, 0, 0, 0, 1024, 0, 0, 384, 0, 288, 0, 0, 0, 0, 360, 0, 0, 0, 2048, 432, 0, 0, 0, 0, 0, 0, 480, 0, 900, 768, 0, 0, 0, 0, 0
MATHEMATICA
nn=10;
fam[n_]:=fam[n]=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[fam[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
nds=Length/@Array[fam[#]&, 2^nn];
Table[If[#=={}, 0, #[[1, 1]]]&[Position[nds, i]], {i, nn}]
CROSSREFS
All nonzero terms belong to A025487.
Includes all highly factorable numbers A033833.
The version without zeros is A045783.
Cf. A001055, A001222, A002033, A007716, A045778, A045779, A330935, A330992, A330997, A330998, A346426.
Numbers that are not the number of factorizations into factors > 1 of any positive integer.
+10
23
6, 8, 10, 13, 14, 17, 18, 20, 23, 24, 25, 27, 28, 32, 33, 34, 35, 37, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 53, 54, 55, 58, 59, 60, 61, 62, 63, 65, 68, 69, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 99
COMMENTS
Warning: I have only confirmed the first eight terms. The rest are derived from A045782. - Gus Wiseman, Jan 07 2020
MATHEMATICA
nn=15;
fam[n_]:=fam[n]=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[fam[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
nds=Length/@Array[fam[#]&, 2^nn];
Complement[Range[nn], nds]
CROSSREFS
The least number with n factorizations is A330973(n).
Sorted list containing the least number with each possible nonzero number of factorizations into distinct factors > 1.
+10
13
1, 6, 12, 24, 48, 60, 64, 96, 120, 144, 180, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 720, 840, 864, 900, 960, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 2048, 2160, 2304, 2310, 2520, 2592, 2880, 3072, 3360, 3456, 3600, 3840, 4320
EXAMPLE
The strict factorizations of a(n) for n = 1..9.
{} 6 12 24 48 60 64 96 120
2*3 2*6 3*8 6*8 2*30 2*32 2*48 2*60
3*4 4*6 2*24 3*20 4*16 3*32 3*40
2*12 3*16 4*15 2*4*8 4*24 4*30
2*3*4 4*12 5*12 6*16 5*24
2*3*8 6*10 8*12 6*20
2*4*6 2*5*6 2*6*8 8*15
3*4*5 3*4*8 10*12
2*3*10 2*3*16 3*5*8
2*4*12 4*5*6
2*3*20
2*4*15
2*5*12
2*6*10
3*4*10
2*3*4*5
MATHEMATICA
nn=1000;
strfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[strfacs[n/d], Min@@#>d&]], {d, Rest[Divisors[n]]}]];
nds=Length/@Array[strfacs, nn];
Table[Position[nds, i][[1, 1]], {i, First/@Gather[nds]}]
CROSSREFS
The least number with n strict factorizations is A330974.
Least positive integer with exactly 2^n factorizations into factors > 1, or 0 if no such integer exists.
+10
11
EXAMPLE
The A001055(n) factorizations for n = 1, 4, 12, 72:
() (4) (12) (72)
(2*2) (2*6) (8*9)
(3*4) (2*36)
(2*2*3) (3*24)
(4*18)
(6*12)
(2*4*9)
(2*6*6)
(3*3*8)
(3*4*6)
(2*2*18)
(2*3*12)
(2*2*2*9)
(2*2*3*6)
(2*3*3*4)
(2*2*2*3*3)
CROSSREFS
The least number with exactly n factorizations is A330973(n).
Numbers whose number of factorizations is a power of 2 are A330977.
The least number with exactly prime(n) factorizations is A330992(n).
Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose degrees (atom multiplicities) are the prime indices of n.
+10
5
1, 1, 1, 1, 2, 1, 3, 2, 1, 3, 1, 7, 7, 1, 5, 5, 1, 5, 9, 5, 1, 9, 11, 1, 9, 28, 36, 16, 1, 10, 24, 16, 1, 14, 38, 27, 1, 13, 18, 1, 13, 69, 160, 164, 61, 1, 24, 79, 62, 1, 20, 160, 580, 1022, 855, 272, 1, 19, 59, 45, 1, 27, 138, 232, 123, 1, 17, 77, 121, 61
COMMENTS
A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
EXAMPLE
Triangle begins:
{}
1
1
1 1
1 2
1 3 2
1 3
1 7 7
1 5 5
1 5 9 5
1 9 11
1 9 28 36 16
1 10 24 16
1 14 38 27
1 13 18
1 13 69 160 164 61
1 24 79 62
For example, row n = 12 counts the following multisystems:
{1,1,2,3} {{1},{1,2,3}} {{{1}},{{1},{2,3}}}
{{1,1},{2,3}} {{{1,1}},{{2},{3}}}
{{1,2},{1,3}} {{{1}},{{2},{1,3}}}
{{2},{1,1,3}} {{{1,2}},{{1},{3}}}
{{3},{1,1,2}} {{{1}},{{3},{1,2}}}
{{1},{1},{2,3}} {{{1,3}},{{1},{2}}}
{{1},{2},{1,3}} {{{2}},{{1},{1,3}}}
{{1},{3},{1,2}} {{{2}},{{3},{1,1}}}
{{2},{3},{1,1}} {{{2,3}},{{1},{1}}}
{{{3}},{{1},{1,2}}}
{{{3}},{{2},{1,1}}}
MATHEMATICA
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]], {#1}]&, If[n==1, {}, Flatten[Cases[Reverse[FactorInteger[n]], {p_, k_}:>Table[PrimePi[p], {k}]]]]];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p], {p, Select[mps[m], 1<Length[#]<Length[m]&]}], m];
Table[Length[Select[totm[nrmptn[n]], Depth[#]==k&]], {n, 2, 10}, {k, 2, Length[nrmptn[n]]}]
CROSSREFS
Final terms in each row are A330728.
Column k = 3 is A318284(n) - 2 for n > 2.
Cf. A000111, A002846, A005121, A292504, A318812, A318813, A318847, A318848, A318849, A330475, A330666, A330935.
Number of nontrivial factorizations of n into factors > 1.
+10
3
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 2, 0, 0, 0, 5, 0, 0, 1, 2, 0, 3, 0, 5, 0, 0, 0, 7, 0, 0, 0, 5, 0, 3, 0, 2, 2, 0, 0, 10, 0, 2, 0, 2, 0, 5, 0, 5, 0, 0, 0, 9, 0, 0, 2, 9, 0, 3, 0, 2, 0, 3, 0, 14, 0, 0, 2, 2, 0, 3, 0, 10, 3, 0, 0, 9, 0, 0
COMMENTS
The trivial factorizations of a number are (1) the case with only one factor, and (2) the factorization into prime numbers.
FORMULA
For prime n, a(n) = 0; for nonprime n, a(n) = A001055(n) - 2.
EXAMPLE
The a(n) nontrivial factorizations of n = 8, 12, 16, 24, 36, 48, 60, 72:
(2*4) (2*6) (2*8) (3*8) (4*9) (6*8) (2*30) (8*9)
(3*4) (4*4) (4*6) (6*6) (2*24) (3*20) (2*36)
(2*2*4) (2*12) (2*18) (3*16) (4*15) (3*24)
(2*2*6) (3*12) (4*12) (5*12) (4*18)
(2*3*4) (2*2*9) (2*3*8) (6*10) (6*12)
(2*3*6) (2*4*6) (2*5*6) (2*4*9)
(3*3*4) (3*4*4) (3*4*5) (2*6*6)
(2*2*12) (2*2*15) (3*3*8)
(2*2*2*6) (2*3*10) (3*4*6)
(2*2*3*4) (2*2*18)
(2*3*12)
(2*2*2*9)
(2*2*3*6)
(2*3*3*4)
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[DeleteCases[Rest[facs[n]], {_}]], {n, 100}]
CROSSREFS
Positions of nonzero terms are A033942.
Nontrivial integer partitions are A007042.
Nontrivial set partitions are A008827.
Triangle read by rows where T(n,k) is the number of chains of length k from minimum to maximum in the poset of integer partitions of n ordered by refinement.
+10
1
1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 8, 4, 0, 1, 9, 25, 28, 11, 0, 1, 13, 57, 111, 99, 33, 0, 1, 20, 129, 379, 561, 408, 116, 0, 1, 28, 253, 1057, 2332, 2805, 1739, 435, 0, 1, 40, 496, 2833, 8695, 15271, 15373, 8253, 1832, 0, 1, 54, 898, 6824, 28071, 67790, 98946, 85870, 40789, 8167
EXAMPLE
Triangle begins:
1
0 1
0 1 1
0 1 3 2
0 1 5 8 4
0 1 9 25 28 11
0 1 13 57 111 99 33
0 1 20 129 379 561 408 116
Row n = 5 counts the following chains (minimum and maximum not shown):
() (14) (113)->(14) (1112)->(113)->(14)
(23) (113)->(23) (1112)->(113)->(23)
(113) (122)->(14) (1112)->(122)->(14)
(122) (122)->(23) (1112)->(122)->(23)
(1112) (1112)->(14)
(1112)->(23)
(1112)->(113)
(1112)->(122)
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
upr[q_]:=Union[Sort/@Apply[Plus, mps[q], {2}]];
paths[eds_, start_, end_]:=If[start==end, Prepend[#, {}], #]&[Join@@Table[Prepend[#, e]&/@paths[eds, Last[e], end], {e, Select[eds, First[#]==start&]}]];
Table[Length[Select[paths[Join@@Table[{y, #}&/@DeleteCases[upr[y], y], {y, Sort/@IntegerPartitions[n]}], ConstantArray[1, n], {n}], Length[#]==k-1&]], {n, 8}, {k, n}]
CROSSREFS
The version for set partitions is A008826.
The version for factorizations is A330935.
Cf. A000111, A000258, A000311, A005121, A141268, A196545, A265947, A300383, A306186, A317141, A317176, A318813, A320160, A330679.
Regular triangle where T(n,k) = Sum (-1)^i, where the sum is over all factorizations of n into i factors that are all > 1 and <= k.
+10
0
1, 0, -1, 0, 0, -1, 0, 1, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, -1, 0, 0, 0, 0, -1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0
FORMULA
T(1,k) = 1, T(n,k) = -Sum_{d|n, 1 < d <= k} T(n/d,d).
EXAMPLE
Triangle begins:
1
0 -1
0 0 -1
0 1 1 0
0 0 0 0 -1
0 0 1 1 1 0
0 0 0 0 0 0 -1
0 -1 -1 0 0 0 0 -1
0 0 1 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 -1
0 0 -1 0 0 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 0 1 1 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
0 0 -1 -1 -1 0 0 0 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0
MATHEMATICA
u[n_, k_]:=If[n==1, 1, -Sum[u[n/d, d], {d, Select[Rest[Divisors[n]], #<=k&]}]]
Table[u[n, k], {n, 20}, {k, n}]
Search completed in 0.011 seconds
|