[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a330935 -id:a330935
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sorted list containing the least number with each possible nonzero number of factorizations into factors > 1.
+10
38
1, 4, 8, 12, 16, 24, 36, 48, 60, 72, 96, 120, 128, 144, 180, 192, 216, 240, 256, 288, 360, 384, 420, 432, 480, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1440, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2520, 2592, 2880, 3072, 3360, 3456, 3600
OFFSET
1,2
COMMENTS
This is the sorted list of positions of first appearances in A001055 of each element of the range (A045782).
LINKS
R. E. Canfield, P. Erdős and C. Pomerance, On a Problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.
EXAMPLE
Factorizations of n for n = 4, 8, 12, 16, 24, 36, 48, 60:
4 8 12 16 24 36 48 60
2*2 2*4 2*6 2*8 3*8 4*9 6*8 2*30
2*2*2 3*4 4*4 4*6 6*6 2*24 3*20
2*2*3 2*2*4 2*12 2*18 3*16 4*15
2*2*2*2 2*2*6 3*12 4*12 5*12
2*3*4 2*2*9 2*3*8 6*10
2*2*2*3 2*3*6 2*4*6 2*5*6
3*3*4 3*4*4 3*4*5
2*2*3*3 2*2*12 2*2*15
2*2*2*6 2*3*10
2*2*3*4 2*2*3*5
2*2*2*2*3
MATHEMATICA
nn=1000;
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
nds=Length/@Array[facs, nn];
Table[Position[nds, i][[1, 1]], {i, First/@Gather[nds]}]
CROSSREFS
All terms belong to A025487
Includes all highly factorable numbers A033833.
Factorizations are A001055, with image A045782.
The least number with A045782(n) factorizations is A045783(n).
The least number with n factorizations is A330973(n).
The strict version is A330997.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 06 2020
STATUS
approved
Number of factorizations of n for some n (image of A001055).
+10
33
1, 2, 3, 4, 5, 7, 9, 11, 12, 15, 16, 19, 21, 22, 26, 29, 30, 31, 36, 38, 42, 45, 47, 52, 56, 57, 64, 66, 67, 74, 77, 92, 97, 98, 101, 105, 109, 118, 135, 137, 139, 141, 162, 165, 171, 176, 181, 189, 195, 198, 203, 212, 231, 249, 250, 254, 257, 267, 269, 272, 289
OFFSET
1,2
COMMENTS
Also the image of A318284. - Gus Wiseman, Jan 11 2020
LINKS
Florian Luca, Anirban Mukhopadhyay and Kotyada Srinivas, On the Oppenheim's "factorisatio numerorum" function, arXiv:0807.0986 [math.NT], 2008.
FORMULA
The Luca et al. paper shows that the number of terms with a(n) <= x is x^{ O( log log log x / log log x )}. - N. J. A. Sloane, Jun 12 2009
MATHEMATICA
terms = 61; m0 = 10^5; dm = 10^4;
f[1, _] = 1; f[n_, k_] := f[n, k] = Sum[f[n/d, d], {d, Select[Divisors[n], 1 < # <= k &]}];
Clear[seq]; seq[m_] := seq[m] = Sort[Tally[Table[f[n, n], {n, 1, m}]][[All, 1]]][[1 ;; terms]]; seq[m = m0]; seq[m += dm]; While[Print[m]; seq[m] != seq[m - dm], m += dm];
seq[m] (* Jean-François Alcover, Oct 04 2018 *)
CROSSREFS
Factorizations are A001055 with image this sequence and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with exactly a(n) factorizations is A045783(n).
The least number with exactly n factorizations is A330973(n).
KEYWORD
nonn
EXTENSIONS
Name edited by Gus Wiseman, Jan 11 2020
STATUS
approved
Least positive integer with exactly n factorizations into factors > 1, and 0 if no such number exists.
+10
26
1, 4, 8, 12, 16, 0, 24, 0, 36, 0, 60, 48, 0, 0, 128, 72, 0, 0, 96, 0, 120, 256, 0, 0, 0, 180, 0, 0, 144, 192, 216, 0, 0, 0, 0, 420, 0, 240, 0, 0, 0, 1024, 0, 0, 384, 0, 288, 0, 0, 0, 0, 360, 0, 0, 0, 2048, 432, 0, 0, 0, 0, 0, 0, 480, 0, 900, 768, 0, 0, 0, 0, 0
OFFSET
1,2
LINKS
R. E. Canfield, P. Erdős and C. Pomerance, On a Problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.
MATHEMATICA
nn=10;
fam[n_]:=fam[n]=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[fam[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
nds=Length/@Array[fam[#]&, 2^nn];
Table[If[#=={}, 0, #[[1, 1]]]&[Position[nds, i]], {i, nn}]
CROSSREFS
All nonzero terms belong to A025487.
Includes all highly factorable numbers A033833.
Factorizations are A001055, with image A045782.
The version without zeros is A045783.
The sorted version is A330972.
The strict version is A330974.
Positions of zeros are A330976.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 06 2020
EXTENSIONS
More terms from Jinyuan Wang, Jul 07 2021
STATUS
approved
Numbers that are not the number of factorizations into factors > 1 of any positive integer.
+10
23
6, 8, 10, 13, 14, 17, 18, 20, 23, 24, 25, 27, 28, 32, 33, 34, 35, 37, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 53, 54, 55, 58, 59, 60, 61, 62, 63, 65, 68, 69, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 99
OFFSET
1,1
COMMENTS
Warning: I have only confirmed the first eight terms. The rest are derived from A045782. - Gus Wiseman, Jan 07 2020
LINKS
R. E. Canfield, P. Erdős and C. Pomerance, On a Problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.
MATHEMATICA
nn=15;
fam[n_]:=fam[n]=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[fam[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
nds=Length/@Array[fam[#]&, 2^nn];
Complement[Range[nn], nds]
CROSSREFS
Complement of A045782.
The strict version is A330975.
Factorizations are A001055, with image A045782.
Strict factorizations are A045778, with image A045779.
The least number with n factorizations is A330973(n).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 07 2020
STATUS
approved
Sorted list containing the least number with each possible nonzero number of factorizations into distinct factors > 1.
+10
13
1, 6, 12, 24, 48, 60, 64, 96, 120, 144, 180, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 720, 840, 864, 900, 960, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 2048, 2160, 2304, 2310, 2520, 2592, 2880, 3072, 3360, 3456, 3600, 3840, 4320
OFFSET
1,2
EXAMPLE
The strict factorizations of a(n) for n = 1..9.
{} 6 12 24 48 60 64 96 120
2*3 2*6 3*8 6*8 2*30 2*32 2*48 2*60
3*4 4*6 2*24 3*20 4*16 3*32 3*40
2*12 3*16 4*15 2*4*8 4*24 4*30
2*3*4 4*12 5*12 6*16 5*24
2*3*8 6*10 8*12 6*20
2*4*6 2*5*6 2*6*8 8*15
3*4*5 3*4*8 10*12
2*3*10 2*3*16 3*5*8
2*4*12 4*5*6
2*3*20
2*4*15
2*5*12
2*6*10
3*4*10
2*3*4*5
MATHEMATICA
nn=1000;
strfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[strfacs[n/d], Min@@#>d&]], {d, Rest[Divisors[n]]}]];
nds=Length/@Array[strfacs, nn];
Table[Position[nds, i][[1, 1]], {i, First/@Gather[nds]}]
CROSSREFS
All terms belong to A025487.
Strict factorizations are A045778, with image A045779.
The unsorted version is A045780.
The non-strict version is A330972.
The least number with n strict factorizations is A330974.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 06 2020
STATUS
approved
Least positive integer with exactly 2^n factorizations into factors > 1, or 0 if no such integer exists.
+10
11
1, 4, 12, 0, 72, 0, 480
OFFSET
0,2
EXAMPLE
The A001055(n) factorizations for n = 1, 4, 12, 72:
() (4) (12) (72)
(2*2) (2*6) (8*9)
(3*4) (2*36)
(2*2*3) (3*24)
(4*18)
(6*12)
(2*4*9)
(2*6*6)
(3*3*8)
(3*4*6)
(2*2*18)
(2*3*12)
(2*2*2*9)
(2*2*3*6)
(2*3*3*4)
(2*2*2*3*3)
CROSSREFS
All nonzero terms belong to A025487 and also A033833.
Factorizations are A001055, with image A045782.
The least number with exactly n factorizations is A330973(n).
Numbers whose number of factorizations is a power of 2 are A330977.
The least number with exactly prime(n) factorizations is A330992(n).
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jan 07 2020
STATUS
approved
Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose degrees (atom multiplicities) are the prime indices of n.
+10
5
1, 1, 1, 1, 2, 1, 3, 2, 1, 3, 1, 7, 7, 1, 5, 5, 1, 5, 9, 5, 1, 9, 11, 1, 9, 28, 36, 16, 1, 10, 24, 16, 1, 14, 38, 27, 1, 13, 18, 1, 13, 69, 160, 164, 61, 1, 24, 79, 62, 1, 20, 160, 580, 1022, 855, 272, 1, 19, 59, 45, 1, 27, 138, 232, 123, 1, 17, 77, 121, 61
OFFSET
2,5
COMMENTS
A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
FORMULA
T(2^n,k) = A008826(n,k).
EXAMPLE
Triangle begins:
{}
1
1
1 1
1 2
1 3 2
1 3
1 7 7
1 5 5
1 5 9 5
1 9 11
1 9 28 36 16
1 10 24 16
1 14 38 27
1 13 18
1 13 69 160 164 61
1 24 79 62
For example, row n = 12 counts the following multisystems:
{1,1,2,3} {{1},{1,2,3}} {{{1}},{{1},{2,3}}}
{{1,1},{2,3}} {{{1,1}},{{2},{3}}}
{{1,2},{1,3}} {{{1}},{{2},{1,3}}}
{{2},{1,1,3}} {{{1,2}},{{1},{3}}}
{{3},{1,1,2}} {{{1}},{{3},{1,2}}}
{{1},{1},{2,3}} {{{1,3}},{{1},{2}}}
{{1},{2},{1,3}} {{{2}},{{1},{1,3}}}
{{1},{3},{1,2}} {{{2}},{{3},{1,1}}}
{{2},{3},{1,1}} {{{2,3}},{{1},{1}}}
{{{3}},{{1},{1,2}}}
{{{3}},{{2},{1,1}}}
MATHEMATICA
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]], {#1}]&, If[n==1, {}, Flatten[Cases[Reverse[FactorInteger[n]], {p_, k_}:>Table[PrimePi[p], {k}]]]]];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p], {p, Select[mps[m], 1<Length[#]<Length[m]&]}], m];
Table[Length[Select[totm[nrmptn[n]], Depth[#]==k&]], {n, 2, 10}, {k, 2, Length[nrmptn[n]]}]
CROSSREFS
Row sums are A318846.
Final terms in each row are A330728.
Row prime(n) is row n of A330784.
Row 2^n is row n of A008826.
Row n is row A181821(n) of A330667.
Column k = 3 is A318284(n) - 2 for n > 2.
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Jan 04 2020
STATUS
approved
Number of nontrivial factorizations of n into factors > 1.
+10
3
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 2, 0, 0, 0, 5, 0, 0, 1, 2, 0, 3, 0, 5, 0, 0, 0, 7, 0, 0, 0, 5, 0, 3, 0, 2, 2, 0, 0, 10, 0, 2, 0, 2, 0, 5, 0, 5, 0, 0, 0, 9, 0, 0, 2, 9, 0, 3, 0, 2, 0, 3, 0, 14, 0, 0, 2, 2, 0, 3, 0, 10, 3, 0, 0, 9, 0, 0
OFFSET
1,12
COMMENTS
The trivial factorizations of a number are (1) the case with only one factor, and (2) the factorization into prime numbers.
FORMULA
For prime n, a(n) = 0; for nonprime n, a(n) = A001055(n) - 2.
EXAMPLE
The a(n) nontrivial factorizations of n = 8, 12, 16, 24, 36, 48, 60, 72:
(2*4) (2*6) (2*8) (3*8) (4*9) (6*8) (2*30) (8*9)
(3*4) (4*4) (4*6) (6*6) (2*24) (3*20) (2*36)
(2*2*4) (2*12) (2*18) (3*16) (4*15) (3*24)
(2*2*6) (3*12) (4*12) (5*12) (4*18)
(2*3*4) (2*2*9) (2*3*8) (6*10) (6*12)
(2*3*6) (2*4*6) (2*5*6) (2*4*9)
(3*3*4) (3*4*4) (3*4*5) (2*6*6)
(2*2*12) (2*2*15) (3*3*8)
(2*2*2*6) (2*3*10) (3*4*6)
(2*2*3*4) (2*2*18)
(2*3*12)
(2*2*2*9)
(2*2*3*6)
(2*3*3*4)
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[DeleteCases[Rest[facs[n]], {_}]], {n, 100}]
CROSSREFS
Positions of nonzero terms are A033942.
Positions of 1's are A030078.
Positions of 2's are A054753.
Nontrivial integer partitions are A007042.
Nontrivial set partitions are A008827.
Nontrivial divisors are A070824.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 04 2020
STATUS
approved
Triangle read by rows where T(n,k) is the number of chains of length k from minimum to maximum in the poset of integer partitions of n ordered by refinement.
+10
1
1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 8, 4, 0, 1, 9, 25, 28, 11, 0, 1, 13, 57, 111, 99, 33, 0, 1, 20, 129, 379, 561, 408, 116, 0, 1, 28, 253, 1057, 2332, 2805, 1739, 435, 0, 1, 40, 496, 2833, 8695, 15271, 15373, 8253, 1832, 0, 1, 54, 898, 6824, 28071, 67790, 98946, 85870, 40789, 8167
OFFSET
1,9
FORMULA
T(n,k) = A330935(2^n,k).
EXAMPLE
Triangle begins:
1
0 1
0 1 1
0 1 3 2
0 1 5 8 4
0 1 9 25 28 11
0 1 13 57 111 99 33
0 1 20 129 379 561 408 116
Row n = 5 counts the following chains (minimum and maximum not shown):
() (14) (113)->(14) (1112)->(113)->(14)
(23) (113)->(23) (1112)->(113)->(23)
(113) (122)->(14) (1112)->(122)->(14)
(122) (122)->(23) (1112)->(122)->(23)
(1112) (1112)->(14)
(1112)->(23)
(1112)->(113)
(1112)->(122)
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
upr[q_]:=Union[Sort/@Apply[Plus, mps[q], {2}]];
paths[eds_, start_, end_]:=If[start==end, Prepend[#, {}], #]&[Join@@Table[Prepend[#, e]&/@paths[eds, Last[e], end], {e, Select[eds, First[#]==start&]}]];
Table[Length[Select[paths[Join@@Table[{y, #}&/@DeleteCases[upr[y], y], {y, Sort/@IntegerPartitions[n]}], ConstantArray[1, n], {n}], Length[#]==k-1&]], {n, 8}, {k, n}]
CROSSREFS
Row sums are A213427.
Main diagonal is A002846.
Column k=3 is A007042.
Dominated by A330784.
The version for set partitions is A008826.
The version for factorizations is A330935.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Jan 03 2020
STATUS
approved
Regular triangle where T(n,k) = Sum (-1)^i, where the sum is over all factorizations of n into i factors that are all > 1 and <= k.
+10
0
1, 0, -1, 0, 0, -1, 0, 1, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, -1, 0, 0, 0, 0, -1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0
OFFSET
1
FORMULA
T(1,k) = 1, T(n,k) = -Sum_{d|n, 1 < d <= k} T(n/d,d).
EXAMPLE
Triangle begins:
1
0 -1
0 0 -1
0 1 1 0
0 0 0 0 -1
0 0 1 1 1 0
0 0 0 0 0 0 -1
0 -1 -1 0 0 0 0 -1
0 0 1 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 -1
0 0 -1 0 0 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 0 1 1 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
0 0 -1 -1 -1 0 0 0 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0
MATHEMATICA
u[n_, k_]:=If[n==1, 1, -Sum[u[n/d, d], {d, Select[Rest[Divisors[n]], #<=k&]}]]
Table[u[n, k], {n, 20}, {k, n}]
KEYWORD
sign,tabl
AUTHOR
Gus Wiseman, Oct 22 2018
STATUS
approved

Search completed in 0.011 seconds