[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a335086 -id:a335086
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of the sum of the reciprocals of the squares of the perfect powers > 1.
+10
0
1, 0, 0, 4, 7, 5, 3, 2, 7, 2, 0, 0, 0, 9, 3, 7, 7, 5, 8, 6, 0, 1, 4, 8, 9, 5, 1, 6, 4, 3, 6, 7, 9, 5, 0, 3, 8, 9, 3, 0, 2, 8, 8, 3, 9, 9, 2, 4, 7, 2, 4, 4, 8, 9, 4, 5, 6, 1, 9, 2, 9, 4, 0, 6, 1, 0, 6, 3, 5, 7, 7, 3, 4, 9, 4, 4, 6, 9, 2, 1, 7, 0, 5, 0, 9, 5, 8, 5, 2, 0, 5, 1, 2, 1, 8, 1, 6, 3, 9, 7, 6, 2, 0, 5, 7
OFFSET
0,4
FORMULA
Equals Sum_{k>=2} 1/A001597(k)^2.
Equals Sum_{k>=2} mu(k)*(1 - zeta(2*k)). - Amiram Eldar, Jan 27 2021
EXAMPLE
Equals 1/4^2 + 1/8^2 + 1/9^2 + 1/16^2 + 1/25^2 + 1/27^2 + 1/32^2 + 1/36^2 + 1/49^2 + 1/64^2 + 1/81^2 + 1/100^2 + ... = 0.10047532720009377586014895164367950389302883992472...
MATHEMATICA
RealDigits[Sum[MoebiusMu[k]*(1 - Zeta[2*k]), {k, 2, 200}], 10, 105][[1]] (* Amiram Eldar, Jan 27 2021 *)
PROG
(PARI) suminf(k=2, moebius(k)*(1-zeta(2*k))) \\ Hugo Pfoertner, Jan 27 2021
KEYWORD
nonn,cons
AUTHOR
Jon E. Schoenfield, Jan 26 2021
STATUS
approved

Search completed in 0.003 seconds