[go: up one dir, main page]

login
Search: a323726 -id:a323726
     Sort: relevance | references | number | modified | created      Format: long | short | data
Integers k such that sigma(k) <= sigma(k+1) <= sigma(k+2) <= sigma(k+3), where sigma is the sum of divisors.
+10
1
1, 13, 61, 73, 133, 145, 193, 205, 253, 397, 457, 481, 493, 553, 565, 613, 625, 661, 673, 733, 757, 793, 817, 853, 913, 973, 997, 1033, 1093, 1213, 1237, 1285, 1321, 1333, 1453, 1513, 1537, 1633, 1645, 1657, 1681, 1813, 1825, 1873, 1933, 2077, 2113, 2173, 2233, 2245, 2293, 2413, 2497
OFFSET
1,2
LINKS
EXAMPLE
73 is a term because sigma(73)=74 <= sigma(74)=114 <= sigma(75)=124 <= sigma(76)=140.
MATHEMATICA
Position[OrderedQ /@ Partition[DivisorSigma[1, Range[2500]], 4, 1], True] // Flatten (* Amiram Eldar, Feb 28 2023 *)
PROG
(PARI) isok(n)=sigma(n)<=sigma(n+1) && sigma(n+1)<=sigma(n+2) && sigma(n+2)<=sigma(n+3)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alexandru Petrescu, Feb 28 2023
STATUS
approved
Odd numbers m such that sigma(m) > sigma(m-1).
+10
0
3, 63, 75, 135, 147, 195, 255, 315, 399, 405, 459, 483, 495, 525, 555, 567, 615, 627, 663, 675, 693, 735, 759, 765, 795, 819, 855, 915, 945, 975, 999, 1035, 1095, 1125, 1155, 1215, 1239, 1287, 1323, 1395, 1455, 1515, 1539, 1575, 1647, 1659, 1683, 1755, 1785, 1815, 1827, 1845, 1875
OFFSET
1,1
COMMENTS
The odd terms of A333038 [sigma(m) <= sigma(m-1)] represent about 95% of the data, so the odd integers that do not satisfy this relation are proposed here.
Except for 3, there are no prime powers in this sequence.
It appears that most of the terms are divisible by 3; the two smallest exceptions are 13475 and 17255 (see A323726).
Odd (and even) numbers such that sigma(m) = sigma(m-1) are in A231546.
EXAMPLE
sigma(63) = 1+3+7+9+21+63 = 104 > sigma(62) = 1+2+31+62=96 and 63 is in the sequence.
sigma(77) = 1+7+11+77 = 96 < sigma(76) = 1+2+4+19+38+76 = 140 and 77 is not a term.
MATHEMATICA
Select[2 * Range[1000] + 1, DivisorSigma[1, #] > DivisorSigma[1, # - 1] &] (* Amiram Eldar, Apr 14 2020 *)
PROG
(PARI) is(n)=n%2 && sigma(n)>sigma(n-1) \\ Charles R Greathouse IV, Apr 14 2020
CROSSREFS
A323726 is a subsequence.
Apart from the first term, a subsequence of A334117.
KEYWORD
nonn
AUTHOR
Bernard Schott, Apr 14 2020
STATUS
approved

Search completed in 0.004 seconds