[go: up one dir, main page]

login
Search: a322115 -id:a322115
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of independent polynomial invariants of symmetric matrix of order n.
+10
12
1, 2, 4, 11, 30, 95, 328, 1211, 4779, 19902, 86682, 393072, 1847264, 8965027, 44814034, 230232789, 1213534723, 6552995689, 36207886517, 204499421849, 1179555353219, 6942908667578, 41673453738272, 254918441681030, 1588256152307002, 10073760672179505
OFFSET
0,2
COMMENTS
Also, number of connected multigraphs with n edges (allowing loops) and any number of nodes.
Also the number of non-isomorphic connected multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. - Gus Wiseman, Jul 18 2018
LINKS
R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO] (2017) Table 63.
FORMULA
Inverse Euler transform of A007717.
EXAMPLE
From Gus Wiseman, Jul 18 2018: (Start)
Non-isomorphic representatives of the a(3) = 11 connected multiset partitions of {1, 1, 2, 2, 3, 3}:
(112233),
(1)(12233), (12)(1233), (112)(233), (123)(123),
(1)(2)(1233), (1)(12)(233), (1)(23)(123), (12)(13)(23),
(1)(2)(3)(123), (1)(2)(13)(23).
(End)
MATHEMATICA
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++,
c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {};
For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t k; s += t]; s!/m];
Kq[q_, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];
RowSumMats[n_, m_, k_] := Module[{s = 0}, Do[s += permcount[q]* SeriesCoefficient[ Exp[Sum[Kq[q, t, k]/t x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];
A007717 = Table[Print[n]; RowSumMats[n, 2 n, 2], {n, 0, 20}];
Join[{1}, EULERi[Rest[A007717]]] (* Jean-François Alcover, Oct 29 2018, using Andrew Howroyd's code for A007717 *)
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
a(0)=1 added by Alberto Tacchella, Jun 20 2011
a(7)-a(25) from Franklin T. Adams-Watters, Jun 21 2011
STATUS
approved
Array read by antidiagonals: T(n,k) is the number of connected k-regular multigraphs on n unlabeled nodes, loops allowed, n >= 0, k >= 0.
+10
9
1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 1, 3, 4, 5, 1, 0, 0, 1, 0, 3, 0, 10, 0, 1, 0, 0, 1, 1, 4, 9, 26, 28, 17, 1, 0, 0, 1, 0, 4, 0, 47, 0, 97, 0, 1, 0, 0, 1, 1, 5, 17, 91, 291, 639, 359, 71, 1, 0, 0, 1, 0, 5, 0, 149, 0, 2789, 0, 1635, 0, 1, 0, 0
OFFSET
0,18
COMMENTS
This sequence can be derived from A167625 by inverse Euler transform.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..405 (first 28 antidiagonals)
FORMULA
Column k is the inverse Euler transform of column k of A167625.
EXAMPLE
Array begins:
=========================================================
n\k | 0 1 2 3 4 5 6 7 8
----+----------------------------------------------------
0 | 1 1 1 1 1 1 1 1 1 ...
1 | 1 0 1 0 1 0 1 0 1 ...
2 | 0 1 1 2 2 3 3 4 4 ...
3 | 0 0 1 0 4 0 9 0 17 ...
4 | 0 0 1 5 10 26 47 91 149 ...
5 | 0 0 1 0 28 0 291 0 1934 ...
6 | 0 0 1 17 97 639 2789 12398 44821 ...
7 | 0 0 1 0 359 0 35646 0 1631629 ...
8 | 0 0 1 71 1635 40264 622457 8530044 89057367 ...
9 | 0 0 1 0 8296 0 14019433 0 6849428873 ...
...
CROSSREFS
Columns k=3..8 (with interspersed 0's for odd k) are: A005967, A085549, A129430, A129432, A129434, A129436.
Cf. A167625 (not necessarily connected), A322115 (not necessarily regular), A328682 (loopless), A333330.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Mar 18 2020
STATUS
approved
Number of labeled connected graphs with n edges (the vertices are {1,2,...,k} for some k).
+10
8
1, 1, 3, 17, 140, 1524, 20673, 336259, 6382302, 138525780, 3384988809, 91976158434, 2751122721402, 89833276321440, 3179852538140115, 121287919647418118, 4959343701136929850, 216406753768138678671, 10037782414506891597734, 493175891246093032826160
OFFSET
0,3
LINKS
P. S. Kolesnikov and B. K. Sartayev, On the special identities of Gelfand--Dorfman algebras, arXiv:2105.13815 [math.RA], 2021.
MATHEMATICA
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n+1], {2}], {n}], And[Union@@#==Range[Max@@Union@@#], Length[csm[#]]==1]&]], {n, 6}]
PROG
(PARI)
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
seq(n)={Vec(vecsum(Connected(vector(2*n, j, (1 + x + O(x*x^n))^binomial(j, 2)))))} \\ Andrew Howroyd, Nov 28 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 27 2018
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Nov 28 2018
STATUS
approved
Regular triangle read by rows where T(n,k) is the number of labeled connected graphs with loops with n edges and k vertices, 1 <= k <= n+1.
+10
6
1, 1, 1, 0, 2, 3, 0, 1, 10, 16, 0, 0, 12, 79, 125, 0, 0, 6, 162, 847, 1296, 0, 0, 1, 179, 2565, 11436, 16807, 0, 0, 0, 116, 4615, 47100, 185944, 262144, 0, 0, 0, 45, 5540, 121185, 987567, 3533720, 4782969, 0, 0, 0, 10, 4720, 220075, 3376450, 23315936, 76826061, 100000000
OFFSET
0,5
LINKS
EXAMPLE
Triangle begins:
1
1 1
0 2 3
0 1 10 16
0 0 12 79 125
0 0 6 162 847 1296
0 0 1 179 2565 11436 16807
MATHEMATICA
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[If[n==0, 1, Length[Select[Subsets[multsubs[Range[k], 2], {n}], And[Union@@#==Range[k], Length[csm[#]]==1]&]]], {n, 0, 6}, {k, 1, n+1}]
PROG
(PARI)
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
M(n)={Mat([Col(p, -(n+1)) | p<-Connected(vector(2*n, j, (1 + x + O(x*x^n) )^binomial(j+1, 2)))[1..n+1]])}
{ my(T=M(10)); for(n=1, #T, print(T[n, ][1..n])) } \\ Andrew Howroyd, Nov 29 2018
CROSSREFS
Row sums are A322151. Last column is A000272.
Column sums are A062740.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Nov 28 2018
EXTENSIONS
Terms a(28) and beyond from Andrew Howroyd, Nov 29 2018
STATUS
approved
Number of labeled connected graphs with loops with n edges (the vertices are {1,2,...,k} for some k).
+10
6
1, 2, 5, 27, 216, 2311, 30988, 499919, 9431026, 203743252, 4960335470, 134382267082, 4009794148101, 130668970606412, 4617468180528235, 175867725701333896, 7182126650899080024, 313063334893103361130, 14507460736615554141354, 712192629608088061633746
OFFSET
0,2
LINKS
MATHEMATICA
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[multsubs[Range[n+1], 2], {n}], And[Union@@#==Range[Max@@Union@@#], Length[csm[#]]==1]&]], {n, 5}]
PROG
(PARI)
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
seq(n)={Vec(vecsum(Connected(vector(2*n, j, (1 + x + O(x*x^n))^binomial(j+1, 2)))))} \\ Andrew Howroyd, Nov 28 2018
CROSSREFS
Row sums of A322147. The unlabeled version is A191970.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 28 2018
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Nov 28 2018
STATUS
approved
Number of labeled connected multigraphs with loops with n edges (the vertices are {1,2,...,k} for some k).
+10
5
1, 2, 7, 39, 314, 3359, 45000, 725269, 13670256, 295099184, 7179749707, 194399095705, 5797793490859, 188855813757729, 6671188010874785, 254007814638737649, 10370334196814589256, 451923738493729293016, 20937747226064522726151, 1027666505638118490940059
OFFSET
0,2
LINKS
MATHEMATICA
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[multsubs[multsubs[Range[n+1], 2], n], And[Union@@#==Range[Max@@Union@@#], Length[csm[#]]==1]&]], {n, 5}]
PROG
(PARI)
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
seq(n)={Vec(vecsum(Connected(vector(2*n, j, 1/(1 - x + O(x*x^n))^binomial(j+1, 2)))))} \\ Andrew Howroyd, Nov 28 2018
CROSSREFS
Row sums of A322148. The unlabeled version is A007719.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 28 2018
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Nov 28 2018
STATUS
approved
Irregular triangle read by rows: T(n,k) is the number of unlabeled multigraphs with loops allowed and n edges covering k vertices, n >= 1, 1 <= k <= 2*n.
+10
4
1, 1, 1, 3, 2, 1, 1, 5, 8, 6, 2, 1, 1, 8, 19, 25, 16, 7, 2, 1, 1, 11, 40, 73, 73, 47, 19, 7, 2, 1, 1, 15, 77, 194, 263, 232, 133, 58, 20, 7, 2, 1, 1, 19, 132, 454, 835, 951, 719, 397, 164, 61, 20, 7, 2, 1, 1, 24, 217, 984, 2385, 3507, 3365, 2306, 1177, 490, 175, 62, 20, 7, 2, 1
OFFSET
1,4
COMMENTS
Covering k vertices means there are no vertices of degree zero.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..650 (rows 1..25)
FORMULA
T(n,k) = A290428(n,k) - A290428(n,k-1).
EXAMPLE
Triangle begins:
1, 1;
1, 3, 2, 1;
1, 5, 8, 6, 2, 1;
1, 8, 19, 25, 16, 7, 2, 1;
1, 11, 40, 73, 73, 47, 19, 7, 2, 1;
1, 15, 77, 194, 263, 232, 133, 58, 20, 7, 2, 1;
1, 19, 132, 454, 835, 951, 719, 397, 164, 61, 20, 7, 2, 1;
...
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c+1)\2)*if(c%2, 1, t(c/2)))}
C(n, m)={my(s=O(x*x^m)); forpart(p=n, s+=permcount(p)/edges(p, i->1-x^i+O(x*x^m))); Col(s/n!)}
T(m) = {my(n=2*m, A=Mat(vector(n+1, n, C(n-1, m)))); A[2..m+1, 2..n+1]-A[2..m+1, 1..n]}
{ my(A=T(8)); for(n=1, matsize(A)[1], print(A[n, 1..2*n])) }
CROSSREFS
Row sums are A007717.
Columns k=2..3 are A024206, A327728.
KEYWORD
nonn,tabf
AUTHOR
Andrew Howroyd, Oct 23 2019
STATUS
approved
Triangle read by rows: T(n,k) is the number of unlabeled connected multigraphs with n edges on k nodes and degree >= 3 at each node, loops allowed, n >= 2, 1 <= k <= floor(2*n/3).
+10
4
1, 1, 2, 1, 4, 1, 7, 5, 1, 10, 20, 5, 1, 14, 48, 36, 1, 18, 99, 153, 30, 1, 23, 181, 481, 277, 17, 1, 28, 303, 1239, 1451, 323, 1, 34, 479, 2811, 5572, 2946, 193, 1, 40, 726, 5805, 17607, 17343, 3806, 71, 1, 47, 1055, 11148, 48401, 77708, 36872, 3188, 1, 54, 1492, 20219, 120018, 288476, 243007, 54386, 1496
OFFSET
2,3
COMMENTS
Terms may be computed using the tools geng, vcolg and multig in nauty with some additional processing to check the degrees of nodes.
LINKS
Brendan McKay and Adolfo Piperno, nauty and Traces
EXAMPLE
Triangle begins:
1;
1, 2;
1, 4;
1, 7, 5;
1, 10, 20, 5;
1, 14, 48, 36;
1, 18, 99, 153, 30;
1, 23, 181, 481, 277, 17;
1, 28, 303, 1239, 1451, 323;
1, 34, 479, 2811, 5572, 2946, 193;
1, 40, 726, 5805, 17607, 17343, 3806, 71;
1, 47, 1055, 11148, 48401, 77708, 36872, 3188;
1, 54, 1492, 20219, 120018, 288476, 243007, 54386, 1496;
...
CROSSREFS
Column 2 is A014616.
Row sums are A360863.
Diagonal sums are A360864.
Cf. A322115, A327615, A360866 (loopless).
KEYWORD
nonn,tabf
AUTHOR
Andrew Howroyd, Feb 24 2023
STATUS
approved
Triangle read by rows: T(n,k) is the number of unlabeled connected multigraphs with n edges on k nodes, no cut-points and degree >= 3 at each node, loops allowed, n >= 2, 1 <= k <= floor(2*n/3).
+10
4
1, 1, 2, 1, 4, 1, 7, 2, 1, 10, 8, 2, 1, 14, 19, 11, 1, 18, 40, 48, 7, 1, 23, 77, 154, 70, 5, 1, 28, 132, 421, 392, 71, 1, 34, 217, 1008, 1638, 690, 35, 1, 40, 340, 2210, 5623, 4548, 767, 16, 1, 47, 510, 4477, 16745, 22657, 8594, 566, 1, 54, 742, 8557, 44698, 92844, 64716, 11247, 226
OFFSET
2,3
COMMENTS
Columns k >= 3 correspond to the 2-connected graphs.
Terms may be computed using the tools geng, vcolg and multig in nauty with some additional processing to check the degrees of nodes.
LINKS
Brendan McKay and Adolfo Piperno, nauty and Traces.
EXAMPLE
Triangle begins:
1;
1, 2;
1, 4;
1, 7, 2;
1, 10, 8, 2;
1, 14, 19, 11;
1, 18, 40, 48, 7;
1, 23, 77, 154, 70, 5;
1, 28, 132, 421, 392, 71;
1, 34, 217, 1008, 1638, 690, 35;
1, 40, 340, 2210, 5623, 4548, 767, 16;
1, 47, 510, 4477, 16745, 22657, 8594, 566;
1, 54, 742, 8557, 44698, 92844, 64716, 11247, 226;
...
CROSSREFS
Column 2 is A014616.
Row sums are A360882.
Row sums except first column are A360871.
KEYWORD
nonn,tabf
AUTHOR
Andrew Howroyd, Feb 25 2023
STATUS
approved
Regular triangle where T(n,k) is the number of labeled connected multigraphs with loops with n edges and k vertices.
+10
3
1, 1, 1, 1, 3, 3, 1, 6, 16, 16, 1, 10, 51, 127, 125, 1, 15, 126, 574, 1347, 1296, 1, 21, 266, 1939, 8050, 17916, 16807, 1, 28, 504, 5440, 35210, 135156, 286786, 262144, 1, 36, 882, 13387, 125730, 736401, 2642122, 5368728, 4782969, 1, 45, 1452, 29854, 388190, 3239491, 17424610, 58925728, 115089813, 100000000
OFFSET
0,5
LINKS
EXAMPLE
Triangle begins:
1
1 1
1 3 3
1 6 16 16
1 10 51 127 125
1 15 126 574 1347 1296
1 21 266 1939 8050 17916 16807
MATHEMATICA
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[If[n==0, 1, Length[Select[multsubs[multsubs[Range[k], 2], n], And[Union@@#==Range[k], Length[csm[#]]==1]&]]], {n, 0, 5}, {k, 1, n+1}]
PROG
(PARI)
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
M(n)={Mat([Col(p, -(n+1)) | p<-Connected(vector(2*n, j, 1/(1 - x + O(x*x^n) )^binomial(j+1, 2)))[1..n+1]])}
{ my(T=M(10)); for(n=1, #T, print(T[n, ][1..n])) } \\ Andrew Howroyd, Nov 29 2018
CROSSREFS
Row sums are A322152. Last column is A000272.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Nov 28 2018
EXTENSIONS
Offset corrected and terms a(28) and beyond from Andrew Howroyd, Nov 29 2018
STATUS
approved

Search completed in 0.022 seconds