[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a322032 -id:a322032
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of k(q)^3 * k'(q)^2 * (K(q) / (Pi/2))^6 / 64 in powers of q where k(), k'(), K() are Jacobi elliptic functions.
+10
5
0, 1, -4, 2, 8, -13, 28, -26, -56, 69, -48, 134, 80, -182, -84, -312, 280, 204, 332, 142, -816, 91, -196, 780, -224, -526, -244, -1198, 2216, 767, 508, -390, -400, -1167, -1424, 466, -2264, 1391, 1392, 3796, -1480, -11, 1768, -2274, 1320, -1508, -1984, -8450
OFFSET
0,3
COMMENTS
In Glaisher (1907) this is denoted by beta'(m) = beta(m)/16 on page 56 while beta(m) (see A322032) is defined on page 38.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of x * (psi(x) * psi(-x)^2)^4 in powers of x where psi() is a Ramanujan theta function.
Expansion of x * (f(-x) * f(-x^4)^2)^4 in powers of x where f() is a Ramanujan theta function.
Expansion of q^(-1/2) * (eta(q) * eta(q^4)^2)^4 in powers of q.
Euler transform of period 4 sequence [ -4, -4, -4, -12, ...].
G.f. is a period 1 Fourier series which satisfies f(-1/(8*t)) = 16 * (t/i)^6 * g(t) where q = exp(2*Pi*i*t) and g() is the g.f. for A225912.
G.f.: x * (Product_{k>0} (1 - x^k) * (1 - x^(4*k))^2)^4.
|a(n)| = A002291(n).
EXAMPLE
x - 4*x^2 + 2*x^3 + 8*x^4 - 13*x^5 + 28*x^6 - 26*x^7 - 56*x^8 + 69*x^9 + ...
q^3 - 4*q^5 + 2*q^7 + 8*q^9 - 13*q^11 + 28*q^13 - 26*q^15 - 56*q^17 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^4]^2)^4, {q, 0, n}]
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, I q]^2 )^4 / -4096, {q, 0, 2 n + 1}]
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A)^2)^4, n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, May 18 2013
STATUS
approved
Absolute value of Glaisher's beta'(2n+1).
(Formerly M3205 N1297)
+10
2
0, 1, 4, 2, 8, 13, 28, 26, 56, 69, 48, 134, 80, 182, 84, 312, 280, 204, 332, 142, 816, 91, 196, 780, 224, 526, 244, 1198, 2216, 767, 508, 390, 400, 1167, 1424, 466, 2264, 1391, 1392, 3796, 1480, 11, 1768, 2274, 1320, 1508, 1984, 8450
OFFSET
0,3
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MATHEMATICA
Abs[CoefficientList[Series[x*QPochhammer[x]^4*QPochhammer[x^4]^8, {x, 0, 60}], x]] (* Vaclav Kotesovec, Oct 08 2019 *)
CROSSREFS
For beta' itself, see A225872, and for beta, see A322032.
KEYWORD
nonn
STATUS
approved

Search completed in 0.005 seconds