[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a328332 -id:a328332
     Sort: relevance | references | number | modified | created      Format: long | short | data
Odd palindromes.
+10
6
1, 3, 5, 7, 9, 11, 33, 55, 77, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 505, 515, 525, 535, 545, 555, 565, 575, 585, 595, 707, 717, 727, 737, 747, 757, 767, 777, 787, 797, 909, 919, 929, 939, 949
OFFSET
1,2
COMMENTS
There are more odd palindromes (A328332) less than 10^K than even palindromes (A328333) because odd palindromes begin with 1, 3, 5, 7 or 9 while even palindromes begin only with 2, 4, 6 or 8. - Bernard Schott, Oct 24 2019
MATHEMATICA
palindromicQ[n_, b_:10]:=TrueQ[IntegerDigits[n, b]==Reverse[IntegerDigits[n, b]]]; Select[Range[1, 10^4, 2], palindromicQ[#]&&Plus@@Drop[DigitCount[#], {1, 10, 1}]==0&] (* Vincenzo Librandi, Feb 07 2014 *)
Select[Range[1, 949, 2], PalindromeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 15 2017 *)
PROG
(PARI) lista(nn) = {forstep(n=1, nn, 2, if (is_A002113(n), print1(n, ", "))); } \\ Michel Marcus, Feb 06 2014
CROSSREFS
Subsequence of A002113.
Cf. A029951 (even palindromes), A328332, A328333.
KEYWORD
nonn,base
EXTENSIONS
Offset set to 1 and more terms from Michel Marcus, Feb 06 2014
STATUS
approved
Expansion of (1 + 4*x - 6*x^2) / ((1 - x) * (1 - 10*x^2)).
+10
2
1, 5, 9, 49, 89, 489, 889, 4889, 8889, 48889, 88889, 488889, 888889, 4888889, 8888889, 48888889, 88888889, 488888889, 888888889, 4888888889, 8888888889, 48888888889, 88888888889, 488888888889, 888888888889, 4888888888889, 8888888888889, 48888888888889, 88888888888889
OFFSET
0,2
COMMENTS
Number of even palindromes < 10^n.
MATHEMATICA
nmax = 28; CoefficientList[Series[(1 + 4 x - 6 x^2)/((1 - x) (1 - 10 x^2)), {x, 0, nmax}], x]
LinearRecurrence[{1, 10, -10}, {1, 5, 9}, 29]
PROG
(PARI) Vec((1 + 4*x - 6*x^2) / ((1 - x) * (1 - 10*x^2)) + O(x^30)) \\ Michel Marcus, Oct 13 2019
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Ilya Gutkovskiy, Oct 12 2019
STATUS
approved

Search completed in 0.006 seconds