[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a327160 -id:a327160
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of positive integers that are reachable from n with some combination of transitions x -> x-phi(x) and x -> gcd(x,phi(x)).
+10
4
1, 2, 2, 3, 2, 4, 2, 4, 3, 5, 2, 5, 2, 5, 3, 5, 2, 7, 2, 6, 4, 6, 2, 6, 3, 6, 4, 6, 2, 7, 2, 6, 3, 8, 3, 8, 2, 7, 5, 7, 2, 9, 2, 7, 5, 7, 2, 7, 3, 10, 3, 7, 2, 11, 5, 7, 5, 8, 2, 8, 2, 7, 5, 7, 3, 8, 2, 9, 4, 8, 2, 9, 2, 8, 5, 8, 3, 12, 2, 8, 5, 10, 2, 10, 5, 8, 3, 8, 2, 10, 3, 8, 5, 8, 3, 8, 2, 9, 6, 11, 2, 9, 2, 8, 6
OFFSET
1,2
FORMULA
a(n) > max(A071575(n), A326195(n)).
EXAMPLE
From n = 12 we can reach any of the following numbers > 0: 12 (with an empty sequence of transitions), 8 (as A051953(12) = 8), 4 (as A009195(12) = A009195(8) = A051953(8) = 4), 2 (as A009195(4) = A051953(4) = 2) and 1 (as A009195(2) = A051953(2) = 1), thus a(12) = 5.
The directed acyclic graph formed from those two transitions with 12 as its unique root looks like this:
12
/ \
| 8
\ /
4
|
2
|
1
PROG
(PARI)
A326198aux(n, xs) = if(vecsearch(xs, n), xs, xs = setunion([n], xs); if(1==n, xs, my(a=gcd(n, eulerphi(n)), b=n-eulerphi(n)); xs = A326198aux(a, xs); if((a==b), xs, A326198aux(b, xs))));
A326198(n) = length(A326198aux(n, Set([])));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 24 2019
STATUS
approved
Number of positive integers that are reachable from n with some combination of transitions x -> usigma(x)-x and x -> gcd(x,phi(x)), where usigma is the sum of unitary divisors of n (A034448), and phi is Euler totient function (A000010).
+10
3
1, 2, 2, 3, 2, 3, 2, 4, 3, 5, 2, 5, 2, 6, 4, 5, 2, 7, 2, 6, 4, 7, 2, 6, 3, 6, 4, 6, 2, 10, 2, 6, 5, 7, 3, 8, 2, 8, 4, 7, 2, 10, 2, 6, 5, 7, 2, 8, 3, 8, 5, 8, 2, 10, 4, 6, 4, 7, 2, 4, 2, 8, 5, 7, 3, 6, 2, 8, 5, 9, 2, 9, 2, 8, 4, 7, 3, 5, 2, 9, 5, 7, 2, 8, 3, 8, 6, 7, 2, 4, 5, 7, 5, 9, 4, 11, 2, 11, 5, 13, 2, 10, 2, 8, 7
OFFSET
1,2
COMMENTS
Question: Is this sequence well-defined for every n > 0? If A318882 is not well-defined for all positive integers, then neither can this be.
FORMULA
a(n) >= max(A318882(n), 1+A326195(n)).
EXAMPLE
a(30) = 10 as the graph obtained from vertex-relations x -> A034460(x) and x -> A009195(x) spans the following ten numbers [1, 2, 4, 6, 8, 12, 18, 30, 42, 54], which is illustrated below:
.
30 -> 42 -> 54 (-> 30 ...)
| | |
2 <-- 6 <- 18
| \ |
1 <-- 4 <- 12
\ |
<-8
PROG
(PARI)
A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
A327161aux(n, xs) = if(vecsearch(xs, n), xs, xs = setunion([n], xs); if(1==n, xs, my(a=A034460(n), b=gcd(eulerphi(n), n)); xs = A327161aux(a, xs); if((a==b), xs, A327161aux(b, xs))));
A327161(n) = length(A327161aux(n, Set([])));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 25 2019
STATUS
approved

Search completed in 0.009 seconds