OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
G.f.: ((2*x^2 - 3*x + 2)*(x - 2)*x)/(x - 1)^5.
a(n) = ((7*n^2 - 14*n - 9)*a(n-1) - 2*(2*n^2 + n - 3)*a(n-2))/(3*(n^2 - 4*n + 3)) for n >= 4.
a(n) = n*(n*(n*(n + 6) + 23) + 66)/24.
MAPLE
a := n -> n*(n*(n*(n + 6) + 23) + 66)/24:
seq(a(n), n=0..41);
MATHEMATICA
Table[(66n+23n^2+6n^3+n^4)/24, {n, 0, 50}] (* Harvey P. Dale, Mar 10 2020 *)
PROG
(PARI) a(n)=n*(n*(n*(n+6)+23)+66)/24 \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Aug 25 2019
STATUS
approved