[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a324245 -id:a324245
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = A324245(n) - n.
+20
5
0, 1, -2, 2, -1, 3, -5, 4, -2, 5, -8, 6, -3, 7, -11, 8, -4, 9, -14, 10, -5, 11, -17, 12, -6, 13, -20, 14, -7, 15, -23, 16, -8, 17, -26, 18, -9, 19, -29, 20, -10, 21, -32, 22, -11, 23, -35, 24, -12, 25, -38, 26, -13, 27, -41, 28, -14, 29, -44, 30, -15, 31, -47, 32
FORMULA
a(n) = A324245(n) - n.
PROG
A324245(n) = if(n%2, (1+3*n)/2, if(!(n%4), 3*(n/4), (n-2)/4));
A349414(n) = (A324245(n)-n); \\ Antti Karttunen, Dec 09 2021
CROSSREFS
Irregular triangle T read by rows: T(n, k) = (A324038(n, k) - 1)/2.
+10
4
0, 2, 1, 10, 6, 42, 8, 26, 56, 170, 5, 34, 17, 106, 37, 226, 113, 682, 3, 22, 138, 11, 70, 426, 150, 906, 75, 454, 2730, 4, 14, 90, 184, 554, 7, 46, 282, 568, 1706, 200, 602, 1208, 3626, 100, 302, 1818, 3640, 10922, 18, 9, 58, 120, 362, 738, 369, 2218, 30, 186, 376, 1130, 2274, 1137, 6826, 133, 802, 401, 2410, 805, 4834, 2417, 14506, 402, 201, 1210, 2424, 7274, 14562, 7281, 43690
COMMENTS
This is the incomplete binary tree corresponding to the modified Collatz map f (from the Vaillant and Delarue link) given in A324245.
FORMULA
This set is obtained, with the map f from A324245, from CfTree(0) = {0}, CfTree(1) = {2}, and for n >= 2 CfTree(n) = {m >= 0: f(m) = T(n-1, k), for k = 1.. A324039(n-1)}.
CROSSREFS
Cf. A248573 (Collatz-Terras tree), A324038 (CfsTree), A324039, A324040, A324245.
The minimal number of iterations to reach 1 of the modified reduced Collatz function, defined for odd numbers 1 + 2*n in A324036 (assuming the Collatz conjecture).
+10
2
0, 2, 1, 6, 7, 5, 3, 7, 4, 8, 2, 6, 9, 48, 7, 46, 10, 5, 8, 14, 47, 11, 6, 45, 9, 10, 4, 49, 12, 13, 8, 47, 10, 11, 5, 44, 50, 5, 9, 15, 9, 48, 3, 12, 12, 40, 7, 46, 51, 10, 10, 38, 16, 43, 49, 30, 4, 13, 8, 14, 41, 19, 47, 20, 52, 11, 11, 16, 39, 17, 6
COMMENTS
a(n) gives also the minimal number of iterations of the Vaillant-Delarue map f, defined in A324245, acting on n to reach 0 (assuming the Collatz conjecture).
CROSSREFS

Search completed in 0.007 seconds