[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a317079 -id:a317079
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of antichains of multisets with multiset-join a normal multiset of size n.
+10
9
1, 1, 3, 16, 198, 9890, 8592538
OFFSET
0,3
COMMENTS
An antichain of multisets is a finite set of finite nonempty multisets, none of which is a submultiset of any other. A multiset is normal if it spans an initial interval of positive integers. The multiset-join of a set of multisets has the same vertices with multiplicities equal to the maxima of the multiplicities in the edges.
LINKS
Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, Journal of Integer Sequences, Vol. 7 (2004).
EXAMPLE
The a(3) = 16 antichains of multisets:
(111),
(122), (12)(22), (1)(22),
(112), (11)(12), (2)(11),
(123), (13)(23), (12)(23), (12)(13), (12)(13)(23), (3)(12), (2)(13), (1)(23), (1)(2)(3).
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
multijoin[mss__]:=Join@@Table[Table[x, {Max[Count[#, x]&/@{mss}]}], {x, Union[mss]}]
submultisetQ[M_, N_]:=Or[Length[M]==0, MatchQ[{Sort[List@@M], Sort[List@@N]}, {{x_, Z___}, {___, x_, W___}}/; submultisetQ[{Z}, {W}]]];
allnorm[n_]:=Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1];
auu[m_]:=Select[stableSets[Union[Rest[Subsets[m]]], submultisetQ], multijoin@@#==m&];
Table[Length[Join@@Table[auu[m], {m, allnorm[n]}]], {n, 5}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 20 2018
EXTENSIONS
a(6) from Robert Price, Jun 21 2021
STATUS
approved
Number of connected multiset partitions of normal multisets of size n.
+10
9
1, 1, 3, 8, 28, 110, 519, 2749, 16317, 106425, 755425, 5781956, 47384170, 413331955, 3818838624, 37213866876, 381108145231, 4088785729738, 45829237977692, 535340785268513, 6502943193997922, 81984445333355812, 1070848034863526547, 14467833457108560375, 201894571410270034773
OFFSET
0,3
COMMENTS
A multiset is normal if it spans an initial interval of positive integers.
LINKS
EXAMPLE
The a(3) = 8 connected multiset partitions are (111), (1)(11), (1)(1)(1), (122), (2)(12), (112), (1)(12), (123).
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], multijoin@@s[[c[[1]]]]]]]]];
allnorm[n_]:=Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1];
Length/@Table[Join@@Table[Select[mps[m], Length[csm[#]]==1&], {m, allnorm[n]}], {n, 8}]
PROG
(PARI)
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
seq(n)={my(u=vector(n, k, x*Ser(EulerT(vector(n, i, binomial(i+k-1, i)))))); Vec(1+vecsum(Connected(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*u[i])))))} \\ Andrew Howroyd, Jan 16 2023
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 20 2018
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Jan 16 2023
STATUS
approved
Number of antichains of multisets with multiset-join a strongly normal multiset of size n.
+10
5
1, 1, 3, 13, 148, 7685
OFFSET
0,3
COMMENTS
An antichain of multisets is a finite set of finite nonempty multisets, none of which is a submultiset of any other. A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities. The multiset-join of a multiset system has the same vertices with multiplicities equal to the maxima of the multiplicities in the edges.
LINKS
Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, Journal of Integer Sequences, Vol. 7 (2004).
EXAMPLE
The a(3) = 13 antichains of multisets:
(111),
(112), (11)(12), (2)(11),
(123), (13)(23), (12)(23), (12)(13), (12)(13)(23), (3)(12), (2)(13), (1)(23), (1)(2)(3).
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
multijoin[mss__]:=Join@@Table[Table[x, {Max[Count[#, x]&/@{mss}]}], {x, Union[mss]}];
submultisetQ[M_, N_]:=Or[Length[M]==0, MatchQ[{Sort[List@@M], Sort[List@@N]}, {{x_, Z___}, {___, x_, W___}}/; submultisetQ[{Z}, {W}]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
auu[m_]:=Select[stableSets[Union[Rest[Subsets[m]]], submultisetQ], multijoin@@#==m&];
Table[Length[Join@@Table[auu[m], {m, strnorm[n]}]], {n, 5}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 20 2018
STATUS
approved
Number of unlabeled connected antichains of multisets with multiset-join a multiset of size n.
+10
5
1, 1, 2, 6, 34, 392
OFFSET
0,3
COMMENTS
An antichain of multisets is a finite set of finite nonempty multisets, none of which is a submultiset of any other. The multiset-join of a multiset system has the same vertices with multiplicities equal to the maxima of the multiplicities in the edges.
LINKS
Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, Journal of Integer Sequences, Vol. 7 (2004).
EXAMPLE
Non-isomorphic representatives of the a(3) = 6 connected antichains of multisets:
(111),
(122), (12)(22),
(123), (13)(23), (12)(13)(23).
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
multijoin[mss__]:=Join@@Table[Table[x, {Max[Count[#, x]&/@{mss}]}], {x, Union[mss]}]
submultisetQ[M_, N_]:=Or[Length[M]==0, MatchQ[{Sort[List@@M], Sort[List@@N]}, {{x_, Z___}, {___, x_, W___}}/; submultisetQ[{Z}, {W}]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], multijoin@@s[[c[[1]]]]]]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
sysnorm[m_]:=First[Sort[sysnorm[m, 1]]];
sysnorm[m_, aft_]:=If[Length[Union@@m]<=aft, {m}, With[{mx=Table[Count[m, i, {2}], {i, Select[Union@@m, #>=aft&]}]}, Union@@(sysnorm[#, aft+1]&/@Union[Table[Map[Sort, m/.{par+aft-1->aft, aft->par+aft-1}, {0, 1}], {par, First/@Position[mx, Max[mx]]}]])]];
cuu[m_]:=Select[stableSets[Union[Rest[Subsets[m]]], submultisetQ], And[multijoin@@#==m, Length[csm[#]]==1]&];
Table[Length[Union[sysnorm/@Join@@Table[cuu[m], {m, strnorm[n]}]]], {n, 5}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 20 2018
STATUS
approved

Search completed in 0.006 seconds