[go: up one dir, main page]

login
Search: a303048 -id:a303048
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of minimal total dominating sets in the n-triangular (Johnson) graph.
+10
4
1, 1, 0, 3, 12, 80, 840, 4032, 31976, 371016, 4354650, 55066880, 680003412, 9047989392, 132626606294, 2096065474440, 34991505975120, 607163217989312, 11006996786618994, 209218563659672064, 4168806234781798100, 86745911047924139760, 1876774293382882814382
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Johnson Graph
Eric Weisstein's World of Mathematics, Total Dominating Set
Eric Weisstein's World of Mathematics, Triangular Graph
FORMULA
E.g.f.: exp(x^3/2) + x*exp(x*exp(x^2+x) - (x+x^2+x^3+x^4/2)). - Andrew Howroyd, Apr 21 2018
MATHEMATICA
Range[0, 20]! CoefficientList[Series[Exp[x^3/2] + x Exp[x Exp[x^2 + x] - (x + x^2 + x^3 + x^4/2)], {x, 0, 20}], x] (* Eric W. Weisstein, Apr 23 2018 *)
PROG
(PARI) seq(n)={Vec(serlaplace(exp(x^3/2 + O(x*x^n)) + x*exp(x*exp(x^2+x + O(x^n)) - (x+x^2+x^3+x^4/2))))} \\ Andrew Howroyd, Apr 21 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Apr 20 2018
EXTENSIONS
a(0)-a(1) prepended and a(8)-a(22) from Andrew Howroyd, Apr 21 2018
STATUS
approved
Number of minimum total dominating sets in the n-triangular (Johnson) graph.
+10
4
0, 3, 12, 80, 840, 630, 13440, 277200, 75600, 3326400, 116839800, 16216200, 1210809600, 65043178200, 5448643200, 617512896000, 47147109609600, 2639867630400, 422378820864000, 43505018548992000, 1742312636064000, 374016445875072000, 49991305310266320000, 1502744648605200000
OFFSET
2,2
COMMENTS
In general, a dominating set on a triangular graph corresponds with an edge cover on a complete graph with optionally one vertex uncovered. In the case of n mod 3 == 1, a minimum total dominating set will correspond with one uncovered vertex and the remaining covered by trees of size 3. In the case of n mod 3 == 2, one of trees needs to be increased to size 4. In the case of n divisible by 3, one tree may be size 5 or two size 4 or all may be size 3 but without an uncovered vertex. - Andrew Howroyd, May 20 2018
LINKS
Eric Weisstein's World of Mathematics, Johnson Graph
Eric Weisstein's World of Mathematics, Total Dominating Set
Eric Weisstein's World of Mathematics, Triangular Graph
FORMULA
a(3*k+1) = (3*k+1)!/(2^k*k!), a(3*k+2) = 4*k*(3*k+2)!/(3*2^k*k!), a(3*k) = (18 - 11*k - 21*k^2 + 32*k^3)*(3*k)!/(18*2^k*k!). - Andrew Howroyd, May 20 2018
MATHEMATICA
Table[Piecewise[{{(2^-(n/3 + 1) (486 - 99 n - 63 n^2 + 32 n^3) n!)/(243 (n/3)!), Mod[n, 3] == 0}, {(2^((1 - n)/3) n!)/Gamma[(n + 2)/3], Mod[n, 3] == 1}, {(2^((8 - n)/3) n!)/(3 Gamma[(n - 2)/3]), Mod[n, 3] == 2}}], {n, 2, 30}]
PROG
(PARI) a(n)={my(t=n\3); n!*if(n%3==0, (18-11*t-21*t^2+32*t^3)/18, if(n%3==1, 1, 4*t/3))/(t!*(2^t))} \\ Andrew Howroyd, May 20 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, May 14 2018
EXTENSIONS
a(9)-a(25) from Andrew Howroyd, May 20 2018
STATUS
approved
Number of minimum dominating sets in the n-triangular (Johnson) graph.
+10
1
1, 3, 15, 15, 195, 105, 2625, 945, 38745, 10395, 634095, 135135, 11486475, 2027025, 229053825, 34459425, 4996616625, 654729075, 118505962575, 13749310575, 3038597637075, 316234143225, 83802047954625, 7905853580625, 2474532170735625, 213458046676875
OFFSET
2,2
LINKS
Eric Weisstein's World of Mathematics, Johnson Graph
Eric Weisstein's World of Mathematics, Minimum Dominating Set
Eric Weisstein's World of Mathematics, Triangular Graph
FORMULA
a(n) = n!! for n odd.
a(n) = (n-1)!!*(1 + n*(n/2 - 1)) for n even. - Andrew Howroyd, Sep 08 2019
PROG
(PARI) a(n)={my(m=(n+1)\2); ((2*m)!/(m!*2^m))*if(n%2, 1, 1 + n*(n/2-1))} \\ Andrew Howroyd, Sep 08 2019
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jan 16 2019
EXTENSIONS
Terms a(14) and beyond from Andrew Howroyd, Sep 08 2019
STATUS
approved

Search completed in 0.006 seconds