[go: up one dir, main page]

login
Search: a302993 -id:a302993
     Sort: relevance | references | number | modified | created      Format: long | short | data
Unitary abundant numbers: numbers k such that usigma(k) > 2*k.
+10
39
30, 42, 66, 70, 78, 102, 114, 138, 150, 174, 186, 210, 222, 246, 258, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822, 834
OFFSET
1,1
COMMENTS
If a term n in the sequence ends in neither 0 nor 5, then 10*n is also in the sequence. - Lekraj Beedassy, Jun 11 2004
The lower asymptotic density of this sequence is larger than 1/18 = 0.0555... which is the density of its subsequence of numbers of the form 6*m where gcd(m, 6) = 1 and m > 1. Numerically, based on counts of terms below 10^n (A302993), it seems that this sequence has an asymptotic density which equals to about 0.070034... - Amiram Eldar, Feb 13 2021
The asymptotic density of this sequence is in the interval (0.0674, 0.1055) (Wall, 1970). - Amiram Eldar, Apr 18 2024
All the terms are nonpowerful numbers (A052485). For powerful numbers (A001694) k, usigma(k)/k < 15/Pi^2 = 1.519817... (A082020; the record values are attained at the squares of primorials, A061742). - Amiram Eldar, Jul 20 2024
REFERENCES
C. Sung, Mathematical Buds, "Unitary Divisors", Chap. V, pp. 42-67, Ed. H. D. Ruderman, Mu Alpha Theta OK 1978.
LINKS
Charles Robert Wall, Topics related to the sum of unitary divisors of an integer, Ph.D. diss., University of Tennessee, 1970.
MAPLE
isA034683 := proc(n)
is(A034448(n) > 2*n) ;
end proc:
for n from 1 do
if isA034683(n) then
print(n);
end if;
end do: # R. J. Mathar, Nov 10 2014
MATHEMATICA
usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])];
Select[Range[1000], usigma[#] > 2#&] (* Jean-François Alcover, Mar 23 2020, after Giovanni Resta in A034448 *)
PROG
(PARI) is(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]) > 2*n; } \\ Amiram Eldar, Apr 18 2024
CROSSREFS
Subsequence of A005101.
KEYWORD
nonn
STATUS
approved
The number of exponential abundant numbers below 10^n.
+10
5
0, 0, 1, 12, 102, 1045, 10449, 104365, 1043641, 10436775, 104367354
OFFSET
1,4
FORMULA
Limit_{n->oo} a(n)/10^n = 0.001043673... is the density of exponential abundant numbers (see A129575). [Updated by Amiram Eldar, Sep 02 2022]
EXAMPLE
Below 10^3 there is only one exponential abundant number, A129575(1) = 900, thus a(3) = 1.
MATHEMATICA
fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; c = 0; k = 1; seq={}; Do[ While[ k < 10^n, If[ esigma[k]>2k, c++ ]; k ++]; AppendTo[seq, c], {n, 1, 5}]; seq
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Apr 30 2019
EXTENSIONS
a(11) from Amiram Eldar, Sep 02 2022
STATUS
approved
The number of nonunitary abundant numbers below 10^n.
+10
5
0, 5, 75, 812, 8079, 81052, 808477, 8097357, 80939927, 809350234
OFFSET
1,2
FORMULA
Conjecture: Lim_{n->oo} a(n)/10^n = 0.0809... is the density of nonunitary abundant numbers.
EXAMPLE
Below 10^2 there are 5 nonunitary abundant numbers, 36, 48, 72, 80, and 96, thus a(2) = 5.
MATHEMATICA
usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; c = 0; k = 1; seq={}; Do[ While[ k < 10^n, If[ nusigma[k]>k, c++ ]; k ++]; AppendTo[seq, c], {n, 1, 5}]; seq
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Apr 30 2019
STATUS
approved
The number of infinitary abundant numbers below 10^n.
+10
4
0, 12, 114, 1270, 12518, 125634, 1257749, 12570993, 125716733, 1256921422, 12570417639
OFFSET
1,2
FORMULA
Conjecture: Lim_{n->oo} a(n)/10^n = 0.125... is the density of infinitary abundant numbers.
EXAMPLE
Below 10^2 there are 12 infinitary abundant numbers, 24, 30, 40, 42, 54, 56, 66, 70, 72, 78, 88, and 96, thus a(2) = 12.
MATHEMATICA
fun[p_, e_] := Module[{ b = IntegerDigits[e, 2]}, m=Length[b]; Product[If[b[[j]] > 0, 1+p^(2^(m-j)), 1], {j, 1, m}]]; isigma[1]=1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; c = 0; k = 1; seq={}; Do[ While[ k < 10^n, If[ isigma[k]>2k, c++ ]; k ++]; AppendTo[seq, c], {n, 1, 5}]; seq
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Apr 30 2019
EXTENSIONS
a(11) from Amiram Eldar, Sep 09 2022
STATUS
approved
The number of odd abundant numbers below 10^n.
+10
3
0, 0, 1, 23, 210, 1996, 20661, 205366, 2048662, 20502004, 204951472
OFFSET
1,4
COMMENTS
Anderson proved that the density of odd deficient numbers is at least (48 - 3*Pi^2)/(32 - Pi^2) ~ 0.831...
Kobayashi et al. proved that the density of odd abundant numbers is between 0.002042 and 0.002071.
LINKS
C. W. Anderson, Density of Deficient Odd Numbers, The American Mathematical Monthly, Vol. 82, No. 10 (1975), pp. 1018-1020.
Mitsuo Kobayashi, Paul Pollack and Carl Pomerance, On the distribution of sociable numbers, Journal of Number Theory, Vol. 129, No. 8 (2009), pp. 1990-2009. See Theorem 10 on p. 2007.
FORMULA
Lim_{n->oo} a(n)/10^n = 0.0020... is the density of odd abundant numbers.
EXAMPLE
945 is the only odd abundant number below 10^3, thus a(3) = 1.
MATHEMATICA
abQ[n_] := DivisorSigma[1, n] > 2 n; c = 0; k = 1; s = {}; Do[While[k < 10^n, If[abQ[k], c++]; k += 2]; AppendTo[s, c], {n, 1, 5}]; s
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Aug 28 2019
STATUS
approved
The number of coreful abundant numbers (A308053) below 10^n.
+10
0
0, 1, 24, 259, 2614, 26222, 262220, 2622178, 26221610, 262215860, 2622158194
OFFSET
1,3
FORMULA
a(n) ~ c * 10^n, where c = 0.0262215... is the asymptotic density of the coreful abundant numbers (see A308053). [Updated by Amiram Eldar, Sep 02 2022]
EXAMPLE
Below 10^2 there is only one coreful abundant number, 72, hence a(2) = 1.
MATHEMATICA
f[p_, e_] := (p^(e+1)-1)/(p-1)-1; csigma[1]=1; csigma[n_] := Times @@ (f @@@ FactorInteger[n]); cpQ[n_] := csigma[n] > 2*n; s={0}; c=0; p=100; Do[If[k==p, AppendTo[s, c]; p*=10]; If[cpQ[k], c++], {k, 1, 1000001}]; s
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, May 10 2019
EXTENSIONS
a(11) from Amiram Eldar, Sep 02 2022
STATUS
approved

Search completed in 0.028 seconds