[go: up one dir, main page]

login
Search: a302934 -id:a302934
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers with a record number of deficient divisors.
+10
2
1, 2, 4, 8, 16, 30, 60, 90, 150, 210, 315, 630, 990, 1575, 1890, 2310, 3465, 4620, 6930, 11550, 13860, 17325, 20790, 30030, 39270, 45045, 60060, 78540, 90090, 117810, 131670, 180180, 196350, 219450, 225225, 255255, 270270, 353430, 395010, 450450, 510510, 746130
OFFSET
1,2
COMMENTS
The corresponding numbers of deficient divisors are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 16, 17, 18, 22, ...
LINKS
FORMULA
Numbers m such that A080226(m) > A080226(k) for all k < m.
EXAMPLE
2 is in the sequence since it is the least number with 2 deficient divisors, 1 and 2. The next number with more than 2 deficient divisors is 4, which has 3 deficient divisors, 1, 2, and 4.
MATHEMATICA
s[n_] := Count[Divisors[n], _?(DivisorSigma[1, #] < 2*# &)]; sm = -1; seq = {}; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1, 10^6}]; seq
Module[{nn=800000, lst}, lst=Table[{n, Count[Divisors[n], _?(DivisorSigma[1, #]<2#&)]}, {n, nn}]; DeleteDuplicates[lst, GreaterEqual[#1[[2]], #2[[2]]]&]][[;; , 1]] (* Harvey P. Dale, May 06 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jun 13 2020
STATUS
approved
Unitary highly composite deficient numbers: unitary deficient numbers k whose number of unitary divisors ud(k) > ud(m) for all unitary deficient numbers m < k.
+10
0
1, 2, 10, 84, 1155, 25740, 471240, 14549535, 535422888
OFFSET
1,2
COMMENTS
The record numbers of unitary divisors are 1, 2, 4, 8, 16, 32, 64, 128, 256, ...
The unitary version of A302934.
MATHEMATICA
usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; udiv[n_] := 2^PrimeNu[n]; dm = 0; Do[sig = usigma[n]; If[sig >= 2 n, Continue[]]; d = udiv[n]; If[d > dm, Print[n]; dm = d], {n, 1, 1000000000}]
PROG
(PARI) nbud(n) = 1<<omega(n);
usigma(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d));
lista(nn) = {my(maxd = 0); for(n=1, nn, if ((usigma(n) < 2*n) && (nbud(n) > maxd), print1(n, ", "); maxd = nbud(n); ); ); } \\ Michel Marcus, Apr 17 2018
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Apr 16 2018
STATUS
approved
Bi-unitary highly composite deficient numbers: bi-unitary deficient numbers k whose number of bi-unitary divisors bd(k) > bd(m) for all bi-unitary deficient numbers m < k.
+10
0
1, 2, 8, 32, 84, 512, 972, 1155, 13365, 25740, 318087, 612612, 11223927, 14549535, 440374077, 746503065, 19013596875
OFFSET
1,2
COMMENTS
The record numbers of bi-unitary divisors are 1, 2, 4, 6, 8, 10, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, ...
The bi-unitary version of A302934.
MATHEMATICA
f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bdivnum[n_] := DivisorSum[n, 1 &, Last@Intersection[f@#, f[n/#]] == 1 &]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; dm = 0; Do[sig = bsigma[n]; If[sig >= 2 n, Continue[]]; d = bdivnum[n]; If[d > dm, Print[n]; dm = d], {n, 1, 1000000000}] (* after Michael De Vlieger at A188999 and A286324 *)
PROG
(PARI) udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
lista(nn) = {my(maxd = 0); for(n=1, nn, vbiudiv = biudivs(n); if ((vecsum(vbiudiv) < 2*n) && (#vbiudiv > maxd), print1(n, ", "); maxd = #vbiudiv; ); ); } \\ Michel Marcus, Apr 17 2018
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Apr 16 2018
EXTENSIONS
a(15)-a(17) from Amiram Eldar, Jan 26 2019
STATUS
approved

Search completed in 0.005 seconds