[go: up one dir, main page]

login
Search: a300840 -id:a300840
     Sort: relevance | references | number | modified | created      Format: long | short | data
Lexicographically earliest such sequence a that a(i) = a(j) => f(i) = f(j) for all i, j, where f(2) = -1, f(n) = 0 if n is a Fermi-Dirac prime (A050376) > 2, and f(n) = A300840(n) for all other numbers.
+20
5
1, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 9, 3, 3, 10, 3, 11, 12, 13, 3, 7, 3, 14, 15, 16, 3, 9, 3, 17, 18, 19, 20, 21, 3, 22, 23, 11, 3, 12, 3, 24, 25, 26, 3, 27, 3, 28, 29, 30, 3, 15, 31, 16, 32, 33, 3, 34, 3, 35, 36, 37, 38, 18, 3, 39, 40, 20, 3, 21, 3, 41, 42, 43, 44, 23, 3, 45, 3, 46, 3, 47, 48, 49, 50, 24, 3, 25, 51, 52, 53, 54, 55, 27, 3, 56, 57, 58, 3, 29, 3, 30
OFFSET
1,2
COMMENTS
For all i, j: a(i) = a(j) => A322823(i) = A322823(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
ispow2(n) = (n && !bitand(n, n-1));
A302777(n) = ispow2(isprimepower(n));
A050376list(up_to) = { my(v=vector(up_to), i=0); for(n=1, oo, if(A302777(n), i++; v[i] = n); if(i == up_to, return(v))); };
v050376 = A050376list(up_to);
A050376(n) = v050376[n];
A052330(n) = { my(p=1, i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
A052331(n) = { my(s=0, e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
A300840(n) = A052330(A052331(n)>>1);
A322822aux(n) = if((2==n), -1, if(A302777(n), 0, A300840(n)));
v322822 = rgs_transform(vector(up_to, n, A322822aux(n)));
A322822(n) = v322822[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 29 2018
STATUS
approved
Lexicographically earliest such sequence a that a(i) = a(j) => f(i) = f(j) for all i, j, where f(n) = -(n mod 2) if n is a prime, and f(n) = A300840(n) for any other number.
+20
4
1, 2, 3, 4, 3, 5, 3, 4, 6, 7, 3, 8, 3, 9, 10, 11, 3, 6, 3, 12, 13, 14, 3, 8, 15, 16, 17, 18, 3, 10, 3, 11, 19, 20, 21, 22, 3, 23, 24, 12, 3, 13, 3, 25, 26, 27, 3, 28, 29, 15, 30, 31, 3, 17, 32, 18, 33, 34, 3, 35, 3, 36, 37, 38, 39, 19, 3, 40, 41, 21, 3, 22, 3, 42, 43, 44, 45, 24, 3, 46, 47, 48, 3, 49, 50, 51, 52, 25, 3, 26, 53, 54, 55, 56, 57, 28, 3, 29, 58, 59, 3, 30, 3, 31
OFFSET
1,2
COMMENTS
For all i, j: A323074(i) = A323074(j) => a(i) = a(j).
Like the related A322822 also this filter sequence satisfies the following two implications, for all i, j >= 1:
a(i) = a(j) => A322356(i) = A322356(j),
a(i) = a(j) => A290105(i) = A290105(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
ispow2(n) = (n && !bitand(n, n-1));
A302777(n) = ispow2(isprimepower(n));
A050376list(up_to) = { my(v=vector(up_to), i=0); for(n=1, oo, if(A302777(n), i++; v[i] = n); if(i == up_to, return(v))); };
v050376 = A050376list(up_to);
A050376(n) = v050376[n];
A052330(n) = { my(p=1, i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
A052331(n) = { my(s=0, e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&A302777(n/d), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
A300840(n) = A052330(A052331(n)>>1);
A323082aux(n) = if(isprime(n), -(n%2), A300840(n));
v323082 = rgs_transform(vector(up_to, n, A323082aux(n)));
A323082(n) = v323082[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 04 2019
STATUS
approved
a(n) = 0 if n is 1 or a Fermi-Dirac prime (A050376), otherwise a(n) = 1 + a(A300840(n)).
+20
3
0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 2, 0, 0, 1, 0, 3, 2, 1, 0, 2, 0, 1, 2, 3, 0, 2, 0, 1, 2, 1, 4, 3, 0, 1, 2, 3, 0, 2, 0, 3, 4, 1, 0, 2, 0, 1, 2, 3, 0, 2, 4, 3, 2, 1, 0, 3, 0, 1, 5, 3, 4, 2, 0, 3, 2, 4, 0, 3, 0, 1, 2, 3, 5, 2, 0, 4, 0, 1, 0, 3, 4, 1, 2, 3, 0, 4, 5, 3, 2, 1, 4, 2, 0, 1, 6, 3, 0, 2, 0, 3, 4
OFFSET
1,12
COMMENTS
For n > 1, a(n) gives the number of edges needed to traverse from n to reach the leftmost branch (where the terms of A050376 are located) in the binary tree illustrated in A052330.
LINKS
FORMULA
a(1) = 0; for n > 1, if A302777(n) == 1, a(n) = 0, otherwise a(n) = 1 + a(A300840(n)).
PROG
(PARI)
up_to = 10000;
ispow2(n) = (n && !bitand(n, n-1));
A302777(n) = ispow2(isprimepower(n));
A050376list(up_to) = { my(v=vector(up_to), i=0); for(n=1, oo, if(A302777(n), i++; v[i] = n); if(i == up_to, return(v))); };
v050376 = A050376list(up_to);
A050376(n) = v050376[n];
A052330(n) = { my(p=1, i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
A052331(n) = { my(s=0, e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
A300840(n) = A052330(A052331(n)>>1);
A322823(n) = if((1==n)||(1==A302777(n)), 0, 1+A322823(A300840(n)));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 29 2018
STATUS
approved
Lexicographically earliest such sequence a that a(i) = a(j) => f(i) = f(j) for all i, j, where f(n) = -(n mod 4) if n is a prime, and f(n) = A300840(n) for any other number.
+20
2
1, 2, 3, 4, 5, 6, 3, 4, 7, 8, 3, 9, 5, 10, 11, 12, 5, 7, 3, 13, 14, 15, 3, 9, 16, 17, 18, 19, 5, 11, 3, 12, 20, 21, 22, 23, 5, 24, 25, 13, 5, 14, 3, 26, 27, 28, 3, 29, 30, 16, 31, 32, 5, 18, 33, 19, 34, 35, 3, 36, 5, 37, 38, 39, 40, 20, 3, 41, 42, 22, 3, 23, 5, 43, 44, 45, 46, 25, 3, 47, 48, 49, 3, 50, 51, 52, 53, 26, 5, 27, 54, 55, 56, 57, 58, 29, 5, 30, 59, 60, 5, 31, 3, 32
OFFSET
1,2
COMMENTS
For all i, j:
A319704(i) = A319704(j) => a(i) = a(j) => A323082(i) = A323082(j).
LINKS
PROG
(PARI)
up_to = 65539;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
ispow2(n) = (n && !bitand(n, n-1));
A302777(n) = ispow2(isprimepower(n));
A050376list(up_to) = { my(v=vector(up_to), i=0); for(n=1, oo, if(A302777(n), i++; v[i] = n); if(i == up_to, return(v))); };
v050376 = A050376list(up_to);
A050376(n) = v050376[n];
A052330(n) = { my(p=1, i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
A052331(n) = { my(s=0, e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&A302777(n/d), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
A300840(n) = A052330(A052331(n)>>1);
A323074aux(n) = if(isprime(n), -(n%4), A300840(n));
v323074 = rgs_transform(vector(up_to, n, A323074aux(n)));
A323074(n) = v323074[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 04 2019
STATUS
approved
Fermi-Dirac factorization prime shift towards larger terms: a(n) = A052330(2*A052331(n)).
+10
12
1, 3, 4, 5, 7, 12, 9, 15, 11, 21, 13, 20, 16, 27, 28, 17, 19, 33, 23, 35, 36, 39, 25, 60, 29, 48, 44, 45, 31, 84, 37, 51, 52, 57, 63, 55, 41, 69, 64, 105, 43, 108, 47, 65, 77, 75, 49, 68, 53, 87, 76, 80, 59, 132, 91, 135, 92, 93, 61, 140, 67, 111, 99, 85, 112, 156, 71, 95, 100, 189, 73, 165, 79, 123, 116, 115, 117, 192, 81
OFFSET
1,2
COMMENTS
With n having a unique factorization as A050376(i) * A050376(j) * ... * A050376(k), with i, j, ..., k all distinct, a(n) = A050376(1+i) * A050376(1+j) * ... * A050376(1+k).
Multiplicative because for coprime m and n the Fermi-Dirac factorizations of m and n are disjoint and their union is the Fermi-Dirac factorization of m * n. - Andrew Howroyd, Aug 02 2018
LINKS
FORMULA
a(n) = A052330(2*A052331(n)).
For all n >= 1, a(A050376(n)) = A050376(1+n).
For all n >= 1, A300840(a(n)) = n.
a(A059897(n,k)) = A059897(a(n), a(k)). - Peter Munn, Nov 23 2019
EXAMPLE
For n = 6 = A050376(1)*A050376(2), a(6) = A050376(2)*A050376(3) = 3*4 = 12.
For n = 12 = A050376(2)*A050376(3), a(12) = A050376(3)*A050376(4) = 4*5 = 20.
MATHEMATICA
fdPrimeQ[n_] := Module[{f = FactorInteger[n], e}, Length[f] == 1 && (2^IntegerExponent[(e = f[[1, 2]]), 2] == e)];
nextFDPrime[n_] := Module[{k = n + 1}, While[! fdPrimeQ[k], k++]; k];
fd[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Table[If[b[[j]] > 0, p^(2^(m - j)), Nothing], {j, 1, m}]];
a[n_] := Times @@ nextFDPrime /@ Flatten[fd @@@ FactorInteger[n]]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 07 2023 *)
PROG
(PARI)
up_to_e = 8192;
v050376 = vector(up_to_e);
A050376(n) = v050376[n];
ispow2(n) = (n && !bitand(n, n-1));
i = 0; for(n=1, oo, if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e, break));
A052330(n) = { my(p=1, i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
A052331(n) = { my(s=0, e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
A300841(n) = A052330(2*A052331(n));
CROSSREFS
Cf. A050376, A052330, A052331, A059897, A300840 (a left inverse).
Cf. also A003961.
Range of values is A003159.
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Apr 12 2018
STATUS
approved
Permutation of natural numbers mapping "Fermi-Dirac factorization" to ordinary factorization: a(1) = 1, a(2*A300841(n)) = 2*a(n), a(A300841(n)) = A003961(a(n)).
+10
10
1, 2, 3, 5, 7, 4, 11, 6, 13, 10, 17, 9, 19, 14, 15, 23, 29, 22, 31, 25, 21, 26, 37, 8, 41, 34, 33, 35, 43, 12, 47, 38, 39, 46, 49, 55, 53, 58, 51, 18, 59, 20, 61, 65, 77, 62, 67, 57, 71, 74, 69, 85, 73, 28, 91, 30, 87, 82, 79, 27, 83, 86, 121, 95, 119, 44, 89, 115, 93, 50, 97, 42, 101, 94, 111, 145, 143, 52, 103, 133, 107, 106, 109, 45, 161
OFFSET
1,2
COMMENTS
Because "Fermi-Dirac factorization" is fundamentally different from ordinary prime factorization (as no exponents larger than 1 are allowed) this pair of permutations mapping between them is not always very intuitive. For example, we have ("as expected") A302776(n) = A302023(A052126(A302024(n))), while on the other hand, we have A302792(n) = A300841(A302023(A032742(A302024(n)))), where an additional shift-operator A300841 is needed for "correction".
FORMULA
a(n) = A005940(1+A052331(n)).
a(A050376(n)) = A000040(n).
A001221(a(n)) = A302790(n).
A001222(a(n)) = A064547(n).
PROG
(PARI)
up_to = 32768;
v050376 = vector(up_to);
A050376(n) = v050376[n];
ispow2(n) = (n && !bitand(n, n-1));
i = 0; for(n=1, oo, if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to, break));
A052331(n) = { my(s=0, e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler
A302024(n) = A005940(1+A052331(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 15 2018
STATUS
approved
GF(2)[X] factorization prime shift towards smaller terms.
+10
10
1, 1, 2, 1, 4, 2, 3, 1, 6, 4, 7, 2, 11, 3, 8, 1, 16, 6, 13, 4, 5, 7, 22, 2, 19, 11, 12, 3, 14, 8, 25, 1, 50, 16, 29, 6, 31, 13, 28, 4, 37, 5, 38, 7, 24, 22, 41, 2, 9, 19, 32, 11, 26, 12, 47, 3, 44, 14, 55, 8, 59, 25, 10, 1, 20, 50, 61, 16, 21, 29, 118, 6, 67, 31, 88, 13, 110, 28, 53, 4, 69, 37, 18, 5, 64, 38, 73, 7, 94, 24, 87, 22, 43, 41, 52, 2, 91
OFFSET
1,3
COMMENTS
Let a x b stand for the carryless binary multiplication of positive integers a and b, that is, the result of operation A048720(a,b). With n having a unique factorization as f(i) x f(j) x ... x f(k), with 1 <= i <= j <= ... <= k, a(n) = f(i-1) x f(j-1) x ... x f(k-1), where f(0) = 1, and f(n) = A014580(n) for n >= 1.
FORMULA
For all n >= 1:
a(A305421(n)) = n.
a(A001317(n)) = A000079(n).
A007814(a(n)) = A268389(n).
PROG
(PARI)
A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
A305419(n) = if(n<3, 1, my(k=n-1); while(k>1 && !A091225(k), k--); (k));
A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))), x, 2)); for(i=1, #f~, f[i, 1] = Pol(binary(A305419(f[i, 1])))); fromdigits(Vec(factorback(f))%2, 2); };
CROSSREFS
Cf. A000079 (positions of ones), A014580, A091225, A268389, A305419, A305421, A305424 (odd bisection), A305425.
Cf. also A064989, A300840.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 07 2018
STATUS
approved
a(n) = A289272(floor(A289271(n)/2)).
+10
8
1, 1, 2, 3, 4, 2, 5, 7, 8, 3, 9, 6, 11, 4, 10, 13, 16, 5, 17, 12, 14, 7, 19, 18, 23, 8, 25, 15, 27, 6, 29, 31, 22, 9, 20, 21, 32, 11, 26, 28, 37, 10, 41, 24, 36, 13, 43, 34, 47, 16, 38, 33, 49, 17, 44, 35, 46, 19, 53, 30, 59, 23, 40, 61, 52, 14, 64, 39, 50, 12, 67, 56, 71, 25, 54, 48, 45, 18, 73, 68, 79, 27, 81, 42, 76, 29, 58, 63, 83, 15, 55, 51, 62, 31, 92
OFFSET
1,3
COMMENTS
For all n > 1, in the binary tree illustrated in A289272, the node which contains (has value) n, its parent node has value a(n).
Each n occurs exactly twice in this sequence.
LINKS
FORMULA
a(n) = A289272(floor(A289271(n)/2)).
PROG
(PARI)
A289271(n) = { my(v=0, i=0, x=1); for(d=2, oo, if(n==1, return(v)); if(1==gcd(x, d)&&1==omega(d), if(!(n%d)&&1==gcd(d, n/d), v += 2^i; n /= d; x *= d); i++)); }; \\ After Rémy Sigrist's program for A289271.
A289272(n) = { my(m=1, pp=1); while(n>0, pp++; while(!isprimepower(pp)||(gcd(pp, m)>1), pp++); if(n%2, m *= pp); n >>=1); (m); };
A322990(n) = A289272(A289271(n)>>1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 01 2019
STATUS
approved
Lexicographically earliest such sequence a that a(i) = a(j) => f(i) = f(j) for all i, j, where f(n) = -1 if n is an odd prime, and f(n) = floor(n/2) for all other numbers.
+10
6
1, 2, 3, 4, 3, 5, 3, 6, 6, 7, 3, 8, 3, 9, 9, 10, 3, 11, 3, 12, 12, 13, 3, 14, 14, 15, 15, 16, 3, 17, 3, 18, 18, 19, 19, 20, 3, 21, 21, 22, 3, 23, 3, 24, 24, 25, 3, 26, 26, 27, 27, 28, 3, 29, 29, 30, 30, 31, 3, 32, 3, 33, 33, 34, 34, 35, 3, 36, 36, 37, 3, 38, 3, 39, 39, 40, 40, 41, 3, 42, 42, 43, 3, 44, 44, 45, 45, 46, 3, 47, 47, 48, 48, 49, 49, 50, 3, 51, 51, 52, 3, 53, 3, 54, 54
OFFSET
1,2
COMMENTS
This sequence is a restricted growth sequence transform of a function f which is defined as f(n) = A004526(n), unless n is an odd prime, in which case f(n) = -1, which is a constant not in range of A004526. See the Crossrefs section for a list of similar sequences.
For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A039636(i) = A039636(j).
For all i, j: a(i) = a(j) <=> A323161(i+1) = A323161(j+1).
The shifted version of this filter, A323161, has a remarkable ability to find many sequences related to primes and prime chains. - Antti Karttunen, Jan 06 2019
FORMULA
a(n) = A323161(n+1) - 1.
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A322809aux(n) = if((n>2)&&isprime(n), -1, (n>>1));
v322809 = rgs_transform(vector(up_to, n, A322809aux(n)));
A322809(n) = v322809[n];
CROSSREFS
A list of few similarly constructed sequences follows, where each sequence is an rgs-transform of such function f, for which the value of f(n) is the n-th term of the sequence whose A-number follows after a parenthesis, unless n is of the form ..., in which case f(n) is given a constant value outside of the range of that sequence:
A322809 (A004526, unless an odd prime) [This sequence],
A322589 (A007913, unless an odd prime),
A322591 (A007947, unless an odd prime),
A322805 (A252463, unless an odd prime),
A323082 (A300840, unless an odd prime),
A322822 (A300840, unless n > 2 and a Fermi-Dirac prime, A050376),
A322988 (A322990, unless a prime power > 2),
A323078 (A097246, unless an odd prime),
A322808 (A097246, unless a squarefree number > 2),
A322816 (A048675, unless an odd prime),
A322807 (A285330, unless an odd prime),
A322814 (A286621, unless an odd prime),
A322824 (A242424, unless an odd prime),
A322973 (A006370, unless an odd prime),
A322974 (A049820, unless n > 1 and n is in A046642),
A323079 (A060681, unless an odd prime),
A322587 (A295887, unless an odd prime),
A322588 (A291751, unless an odd prime),
A322592 (A289625, unless an odd prime),
A323369 (A323368, unless an odd prime),
A323371 (A295886, unless an odd prime),
A323374 (A323373, unless an odd prime),
A323401 (A323372, unless an odd prime),
A323405 (A323404, unless an odd prime).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 26 2018
STATUS
approved

Search completed in 0.009 seconds