[go: up one dir, main page]

login
Search: a300547 -id:a300547
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = [x^n] Product_{d|n} 1/(1 + x^d).
+10
3
1, -1, 0, -2, 0, -2, 0, -2, 0, -5, 1, -2, 1, -2, 0, -14, 0, -2, 1, -2, 0, -18, 0, -2, 0, -7, 1, -23, 0, -2, 6, -2, 0, -26, 1, -26, 4, -2, 0, -30, 0, -2, 6, -2, 1, -286, 0, -2, 0, -9, 7, -38, 0, -2, 8, -38, 1, -42, 1, -2, 7, -2, 0, -493, 0, -44, 9, -2, 0, -50, 10, -2, 0, -2, 1, -698, 1, -50, 12, -2, 0, -239, 1, -2, 10, -56
OFFSET
0,4
FORMULA
a(n) = -2 if n is an odd prime (A065091).
MATHEMATICA
Table[SeriesCoefficient[Product[1/(1 + Boole[Mod[n, k] == 0] x^k), {k, 1, n}], {x, 0, n}], {n, 0, 85}]
PROG
(PARI) A300548(n) = if(!n, 1, my(p=1); fordiv(n, d, p /= (1 + 'x^d)); polcoeff(Ser(p, 'x, 1+n), n)); \\ Antti Karttunen, Nov 27 2024
KEYWORD
sign,changed
AUTHOR
Ilya Gutkovskiy, Mar 08 2018
STATUS
approved
a(n) = [x^n] Product_{d|n} (1 + x^d)/(1 - x^d).
+10
2
1, 2, 4, 4, 10, 4, 28, 4, 36, 14, 44, 4, 284, 4, 60, 64, 202, 4, 616, 4, 732, 88, 92, 4, 5740, 22, 108, 112, 1404, 4, 10672, 4, 1828, 136, 140, 144, 42622, 4, 156, 160, 22940, 4, 28024, 4, 3420, 3172, 188, 4, 266524, 30, 4344, 208, 4764, 4, 58600, 224, 60204, 232, 236, 4, 3464272, 4, 252, 6052, 27338, 264
OFFSET
0,2
FORMULA
a(n) = 4 if n is a prime (A000040).
MATHEMATICA
Table[SeriesCoefficient[Product[(1 + Boole[Mod[n, k] == 0] x^k)/(1 - Boole[Mod[n, k] == 0] x^k), {k, 1, n}], {x, 0, n}], {n, 0, 65}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 08 2018
STATUS
approved

Search completed in 0.004 seconds