[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a305901 -id:a305901
     Sort: relevance | references | number | modified | created      Format: long | short | data
Filter sequence for a(primes > 3) = constant sequences.
+10
26
1, 2, 3, 4, 5, 6, 5, 7, 8, 9, 5, 10, 5, 11, 12, 13, 5, 14, 5, 15, 16, 17, 5, 18, 19, 20, 21, 22, 5, 23, 5, 24, 25, 26, 27, 28, 5, 29, 30, 31, 5, 32, 5, 33, 34, 35, 5, 36, 37, 38, 39, 40, 5, 41, 42, 43, 44, 45, 5, 46, 5, 47, 48, 49, 50, 51, 5, 52, 53, 54, 5, 55, 5, 56, 57, 58, 59, 60, 5, 61, 62, 63, 5, 64, 65, 66, 67, 68, 5, 69, 70, 71, 72, 73, 74, 75, 5, 76
OFFSET
1,2
COMMENTS
For all i, j:
a(i) = a(j) => A305801(i) = A305801(j) => A305800(i) = A305800(j).
a(i) = a(j) => A007949(i) = A007949(j).
a(i) = a(j) => A305893(i) = A305893(j).
LINKS
FORMULA
For n <= 5, a(n) = n, for >= 5, a(n) = 5 when n is a prime, and a(n) = 3+n-A000720(n) when n is a composite.
PROG
(PARI) A305900(n) = if(n<=5, n, if(isprime(n), 5, 3+n-primepi(n)));
CROSSREFS
Cf. also A305901, A305902, A305903 (this filter applied to various permutations of N).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 14 2018
STATUS
approved
Filter sequence for the prime signature of 2n-1.
+10
7
1, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 3, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 2, 3, 4, 2, 4, 4, 2, 2, 6, 4, 2, 4, 2, 2, 6, 4, 2, 7, 2, 4, 4, 2, 4, 4, 4, 2, 6, 2, 2, 8, 2, 2, 4, 2, 4, 6, 4, 3, 4, 5, 2, 4, 2, 4, 9, 2, 2, 4, 4, 4, 6, 2, 2, 6, 4, 2, 4, 4, 2, 8, 2, 3, 6, 2, 6, 4, 2, 2, 4, 4, 4, 9, 2, 2, 8, 2, 2, 4, 4, 4, 6, 4, 2, 4, 4, 4, 4, 4, 2, 10, 2, 2, 8, 2, 4, 4, 2
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of A278223, the least number with the same prime signature as the n-th odd number.
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
v305973 = rgs_transform(vector(up_to, n, A046523(n+n-1)));
A305973(n) = v305973[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 15 2018
STATUS
approved
Filter sequence for a(Sophie Germain primes > 3) = constant sequences.
+10
5
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 5, 22, 23, 24, 25, 26, 5, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 5, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 5, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 5, 78, 79, 80, 81, 82, 5, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 5
OFFSET
1,2
COMMENTS
Filer sequence for all such sequences S, for which S(A005384(k)) = constant for all k >= 3.
Restricted growth sequence transform of the ordered pair [A305900(n), A305901(1+n)].
For all i, j:
a(i) = a(j) => A305900(i) = A305900(j),
a(i) = a(j) => A305901(1+i) = A305901(1+j),
a(i) = a(j) => A305978(i) = A305978(j),
a(i) = a(j) => A305985(i) = A305985(j).
LINKS
FORMULA
If n < 5, a(n) = n; for n >= 5, a(n) = 5 if A156660(n) == 1 [when n is in A005384[3..] = 5, 11, 23, 29, 41, 53, 83, 89, 113, ...], otherwise a(n) = 3+n-A156874(n).
PROG
(PARI)
up_to = 100000;
A156660(n) = (isprime(n)&&isprime(2*n+1)); \\ From A156660
partialsums(f, up_to) = { my(v = vector(up_to), s=0); for(i=1, up_to, s += f(i); v[i] = s); (v); }
v156874 = partialsums(A156660, up_to);
A156874(n) = v156874[n];
A305810(n) = if(n<5, n, if(A156660(n), 5, 3+n-A156874(n)));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 16 2018
STATUS
approved
Filter sequence which for primes p records the prime signature of 2p+1, and for all other numbers assigns a unique number.
+10
4
1, 2, 2, 3, 2, 4, 5, 6, 7, 8, 2, 9, 10, 11, 12, 13, 5, 14, 5, 15, 16, 17, 2, 18, 19, 20, 21, 22, 2, 23, 24, 25, 26, 27, 28, 29, 24, 30, 31, 32, 2, 33, 5, 34, 35, 36, 5, 37, 38, 39, 40, 41, 2, 42, 43, 44, 45, 46, 5, 47, 5, 48, 49, 50, 51, 52, 53, 54, 55, 56, 5, 57, 24, 58, 59, 60, 61, 62, 5, 63, 64, 65, 2, 66, 67, 68, 69, 70, 2, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 5
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of function f defined as f(n) = A046523(2n+1) when n is a prime, otherwise -n.
For all i, j:
A305810(i) = A305810(j) => a(i) = a(j),
and
a(i) = a(j) => A305800(i) = A305800(j),
a(i) = a(j) => A305978(i) = A305978(j),
a(i) = a(j) => A305985(i) = A305985(j).
LINKS
PROG
(PARI)
up_to = 100000;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A319706aux(n) = if(isprime(n), A046523(n+n+1), -n);
v319706 = rgs_transform(vector(up_to, n, A319706aux(n)));
A319706(n) = v319706[n];
CROSSREFS
Cf. A005384 (positions of 2's), A234095 (positions of 5's).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 26 2018
STATUS
approved
Restricted growth sequence transform of A305900(A048673(n)).
+10
3
1, 2, 3, 4, 5, 6, 7, 8, 4, 4, 4, 4, 9, 4, 10, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 4, 4, 24, 25, 4, 26, 4, 27, 28, 4, 29, 30, 4, 31, 4, 32, 33, 34, 35, 4, 36, 37, 38, 39, 40, 41, 4, 42, 4, 4, 43, 44, 45, 46, 47, 48, 49, 50, 51, 4, 52, 4, 53, 54, 55, 56, 57, 58, 59, 60, 61, 4, 62, 63, 64, 4, 4, 65, 66, 67, 4, 68, 4, 69, 70, 71, 72, 73, 74, 4
OFFSET
1,2
COMMENTS
For all i, j:
a(i) = a(j) => A278224(i) = A278224(j).
a(i) = a(j) => A286583(i) = A286583(j).
a(i) = a(j) => A292251(i) = A292251(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
A048673(n) = (A003961(n)+1)/2;
A305900(n) = if(n<=5, n, if(isprime(n), 5, 3+n-primepi(n)));
v305902 = rgs_transform(vector(up_to, n, A305900(A048673(n))));
A305902(n) = v305902[n];
CROSSREFS
Cf. also A305901.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 14 2018
STATUS
approved

Search completed in 0.008 seconds