Displaying 1-10 of 50 results found.
a(n) = 6*n^2 + 2 for n > 0, a(0)=1.
(Formerly M4497)
+10
580
1, 8, 26, 56, 98, 152, 218, 296, 386, 488, 602, 728, 866, 1016, 1178, 1352, 1538, 1736, 1946, 2168, 2402, 2648, 2906, 3176, 3458, 3752, 4058, 4376, 4706, 5048, 5402, 5768, 6146, 6536, 6938, 7352, 7778, 8216, 8666, 9128, 9602, 10088, 10586
COMMENTS
Number of points on surface of 3-dimensional cube in which each face has a square grid of dots drawn on it (with n+1 points along each edge, including the corners).
Coordination sequence for b.c.c. lattice.
Also coordination sequence for 3D uniform tiling with tile an equilateral triangular prism. - N. J. A. Sloane, Feb 06 2018
Binomial transform of [1, 7, 11, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Oct 22 2007
Apart from the first term, numbers of the form (r^2+2*s^2)*n^2+2 = (r*n)^2+(s*n-1)^2+(s*n+1)^2: in this case is r=2, s=1. After 8, all terms are in A000408. - Bruno Berselli, Feb 07 2012
For n > 0, the sequence of last digits (i.e., a(n) mod 10) is (8, 6, 6, 8, 2) repeating forever. - M. F. Hasler, Apr 05 2016
Number of cubes of edge length 1 required to make a hollow cube of edge length n+1. - Peter M. Chema, Apr 01 2017
REFERENCES
H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (194) hP4
B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #11.
R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(0) = 1, a(n) = (n+1)^3 - (n-1)^3. - Ilya Nikulshin (ilyanik(AT)gmail.com), Aug 11 2009
a(0)=1, a(1)=8, a(2)=26, a(3)=56; for n>3, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Oct 25 2011
E.g.f.: 2*(1 + 3*x + 3*x^2)*exp(x) - 1. - G. C. Greubel, Dec 01 2017
Sum_{n>=0} 1/a(n) = 3/4+ Pi*sqrt(3)*coth(Pi/sqrt 3)/12 = 1.2282133.. - R. J. Mathar, Apr 27 2024
EXAMPLE
For n = 1 we get the 8 corners of the cube; for n = 2 each face has 9 points, for a total of 8 + 12 + 6 = 26.
MAPLE
A005897:=-(z+1)*(z**2+4*z+1)/(z-1)**3; # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
MATHEMATICA
Join[{1}, 6Range[50]^2+2] (* or *) Join[{1}, LinearRecurrence[{3, -3, 1}, {8, 26, 56}, 50]] (* Harvey P. Dale, Oct 25 2011 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(2*(1 + 3*x + 3*x^2)*exp(x) - 1)) \\ G. C. Greubel, Dec 01 2017
(Haskell) a005897 n = if n == 0 then 1 else 6 * n ^ 2 + 2 -- Reinhard Zumkeller, Apr 27 2014
CROSSREFS
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Centered cube numbers: n^3 + (n+1)^3.
(Formerly M4616)
+10
112
1, 9, 35, 91, 189, 341, 559, 855, 1241, 1729, 2331, 3059, 3925, 4941, 6119, 7471, 9009, 10745, 12691, 14859, 17261, 19909, 22815, 25991, 29449, 33201, 37259, 41635, 46341, 51389, 56791, 62559, 68705, 75241, 82179, 89531, 97309, 105525, 114191, 123319, 132921
COMMENTS
Write the natural numbers in groups: 1; 2,3,4; 5,6,7,8,9; 10,11,12,13,14,15,16; ..... and add the groups, i.e., a(n) = Sum_{j=n^2-2(n-1)..n^2} j. - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Sep 05 2001
The numbers 1, 9, 35, 91, etc. are divisible by 1, 3, 5, 7, etc. Therefore there are no prime numbers in this list. 9 is divisible by 3 and every third number after 9 is also divisible by 3. 35 is divisible by 5 and 7 and every fifth number after 35 is also divisible by 5 and every seventh number after 35 is also divisible by 7. This pattern continues indefinitely. - Howard Berman (howard_berman(AT)hotmail.com), Nov 07 2008
n^3 + (n+1)^3 = (2n+1)*(n^2+n+1), hence all terms are composite. - Zak Seidov, Feb 08 2011
This is the order of an n-ball centered at a node in the Kronecker product (or direct product) of three cycles, each of whose lengths is at least 2n+2. - Pranava K. Jha, Oct 10 2011
Positive y values of 4*x^3 - 3*x^2 = y^2. - Bruno Berselli, Apr 28 2018
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (10).
FORMULA
E.g.f.: (1 + 8*x + 9*x^2 + 2*x^3)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
MATHEMATICA
CoefficientList[Series[(1 + 5 x + 5 x^2 + x^3)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 16 2015 *)
PROG
(Python)
A005898_list, m = [], [12, -6, 2, 1]
for _ in range(10**2):
for i in range(3):
CROSSREFS
(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Centered octahedral numbers (crystal ball sequence for cubic lattice).
(Formerly M4384 N1844)
+10
93
1, 7, 25, 63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017, 7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775, 30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153, 82239
COMMENTS
Number of points in simple cubic lattice at most n steps from origin.
If X is an n-set and Y_i (i=1,2,3) mutually disjoint 2-subsets of X then a(n-6) is equal to the number of 6-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Aug 26 2007
Equals binomial transform of [1, 6, 12, 8, 0, 0, 0, ...] where (1, 6, 12, 8) = row 3 of the Chebyshev triangle A013609. - Gary W. Adamson, Jul 19 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 4, a(n-2) = -coeff(charpoly(A,x),x^(n-3)). - Milan Janjic, Jan 26 2010
a(n) = D(3,n) where D are the Delannoy numbers ( A008288). As such, a(n) gives the number of grid paths from (0,0) to (3,n) using steps that move one unit north, east, or northeast. - David Eppstein, Sep 07 2014
The first comment above can be re-expressed and generalized as follows: a(n) is the number of points in Z^3 that are L1 (Manhattan) distance <= n from any given point. Equivalently, due to a symmetry that is easier to see in the Delannoy numbers array ( A008288), as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= 3 from any given point. - Shel Kaphan, Jan 02 2023
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (10).
FORMULA
G.f.: (1+x)^3 /(1-x)^4. [conjectured (correctly) by Simon Plouffe in his 1992 dissertation]
a(n) = (2*n+1)*(2*n^2 + 2*n + 3)/3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(0)=1, a(1)=7, a(2)=25, a(3)=63. - Harvey P. Dale, Jun 05 2013
a(n) = Sum_{k=0..min(3,n)} 2^k * binomial(3,k) * binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014
E.g.f.: exp(x)*(3 + 18*x + 18*x^2 + 4*x^3)/3. - Stefano Spezia, Mar 14 2024
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = 5/6 - log(2) = (1 - 1/2 + 1/3) - log(2). - Peter Bala, Mar 21 2024
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {1, 7, 25, 63}, 40] (* Harvey P. Dale, Jun 05 2013 *)
CoefficientList[Series[(1 + x)^3/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
PROG
(Haskell)
a001845 n = (2 * n + 1) * (2 * n ^ 2 + 2 * n + 3) `div` 3
CROSSREFS
Sums of 2 consecutive terms give A008412.
(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Centered icosahedral (or cuboctahedral) numbers, also crystal ball sequence for f.c.c. lattice.
(Formerly M4898)
+10
86
1, 13, 55, 147, 309, 561, 923, 1415, 2057, 2869, 3871, 5083, 6525, 8217, 10179, 12431, 14993, 17885, 21127, 24739, 28741, 33153, 37995, 43287, 49049, 55301, 62063, 69355, 77197, 85609, 94611, 104223, 114465, 125357, 136919, 149171, 162133, 175825, 190267, 205479
COMMENTS
Called "magic numbers" in some chemical contexts.
Equals binomial transform of [1, 12, 30, 20, 0, 0, 0, ...]. - Gary W. Adamson, Aug 01 2008
Crystal ball sequence for A_3 lattice. - Michael Somos, Jun 03 2012
REFERENCES
H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 ( pdf).
D. R. Herrick, Home Page (displays these numbers as sizes of clusters in chemistry)
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
FORMULA
a(n) = (2*n+1)*(5*n^2+5*n+3)/3.
G.f.: (x^3 + 9x^2 + 9x + 1)/(x - 1)^4.
E.g.f.: (1/3)*exp(x)*(10x^3 + 45x^2 + 36x + 3).
(End)
EXAMPLE
a(4) = 147 = (1, 3, 3, 1) dot (1, 12, 30, 20) = (1 + 36 + 90 + 20). - Gary W. Adamson, Aug 01 2008
G.f. = 1 + 13*x + 55*x^2 + 147*x^3 + 309*x^4 + 561*x^5 + 923*x^6 + 1415*x^7 + ...
MAPLE
A005902 := n -> (2*n+1)*(5*n^2+5*n+3)/3;
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {1, 13, 55, 147}, 50] (* Harvey P. Dale, Oct 08 2015 *)
CoefficientList[Series[(x^3 + 9*x^2 + 9*x + 1)/(x - 1)^4, {x, 0, 50}], x] (* Indranil Ghosh, Apr 08 2017 *)
PROG
(PARI) {a(n) = (2*n + 1) * (5*n^2 + 5*n + 3) / 3}; /* Michael Somos, Jun 03 2012 */
(PARI) x='x+O('x^50); Vec((x^3 + 9*x^2 + 9*x + 1)/(x - 1)^4) \\ Indranil Ghosh, Apr 08 2017
(Magma) [(2*n+1)*(5*n^2+5*n+3)/3: n in [0..30]]; // G. C. Greubel, Dec 01 2017
(Python)
def a(n): return (2*n+1)*(5*n**2+5*n+3)//3
CROSSREFS
(1/12)*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Number of points on surface of tetrahedron; coordination sequence for sodalite net (equals 2*n^2+2 for n > 0).
(Formerly M3380)
+10
84
1, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234
COMMENTS
Number of n-matchings of the wheel graph W_{2n} (n > 0). Example: a(2)=10 because in the wheel W_4 (rectangle ABCD and spokes OA,OB,OC,OD) we have the 2-matchings: (AB, OC), (AB, OD), (BC, OA), (BC,OD), (CD,OA), (CD,OB), (DA,OB), (DA,OC), (AB,CD) and (BC,DA). - Emeric Deutsch, Dec 25 2004
For n > 0 a(n) is the difference of two tetrahedral (or pyramidal) numbers: binomial(n+3, 3) = (n+1)(n+2)(n+3)/6. a(n) = A000292(n+1) - A000292(n-3) = (n+1)(n+2)(n+3)/6 - (n-3)(n-2)(n-1)/6. - Alexander Adamchuk, May 20 2006; updated by Peter Munn, Aug 25 2017 due to changed offset in A000292
Equals binomial transform of [1, 3, 3, 1, -1, 1, -1, 1, -1, 1, ...]. Binomial transform of A005893 = nonzero terms of A053545: (1, 5, 19, 63, 191, ...). - Gary W. Adamson, Apr 28 2008
Disregarding the terms < 10, the sums of four consecutive triangular numbers ( A000217). - Rick L. Shepherd, Sep 30 2009
Use a set of n concentric circles where n >= 0 to divide the plane. a(n) is the maximal number of regions after the 2nd division. - Frank M Jackson, Sep 07 2011
Euler transform of length 4 sequence [4, 0, 0, -1]. - Michael Somos, May 14 2014
Also, growth series for affine Coxeter group (or affine Weyl group) A_3 or D_3. - N. J. A. Sloane, Jan 11 2016
For n > 2 the generalized Pell's equation x^2 - 2*(a(n) - 2)y^2 = (a(n) - 4)^2 has a finite number of positive integer solutions. - Muniru A Asiru, Apr 19 2016
REFERENCES
N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #28.
R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 ( pdf).
Reticular Chemistry Structure Resource, sod.
FORMULA
G.f.: (1 - x^4)/(1-x)^4.
a(n) = binomial(n+3, 3) - binomial(n-1, 3) for n >= 1. - Mitch Harris, Jan 08 2008
a(n) = (n+1)^2 + (n-1)^2. - Benjamin Abramowitz, Apr 14 2009
a(0)=1, a(1)=4, a(2)=10, a(3)=20, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 26 2012
For n >= 2: a(n) = a(n-1) + 4*n - 2. - Bob Selcoe, Mar 22 2016
Sum_{n>=0} 1/a(n) = (coth(Pi)*Pi + 3)/4.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi)*Pi + 3)/4. (End)
Empirical: Integral_{u=-oo..+oo} sigmoid(u)*log(sigmoid(n * u)) du = -Pi^2*a(n) / (24*n), where sigmoid(x) = 1/(1+exp(-x)). Also works for non-integer n>0. - Carlo Wood, Dec 04 2023
Let P(k,n) be the n-th k-gonal number. Then P(a(k),n) = (k*n-k+1)^2 + (k-1)^2*(n-1). - Charlie Marion, May 15 2024
EXAMPLE
G.f. = 1 + 4*x + 10*x^2 + 20*x^3 + 34*x^4 + 52*x^5 + 74*x^6 + 100*x^7 + ...
MATHEMATICA
Join[{1}, LinearRecurrence[{3, -3, 1}, {4, 10, 20}, 50]] (* Harvey P. Dale, Feb 26 2012 *)
a[ n_] := SeriesCoefficient[ (1 - x^4) / (1 - x)^4, {x, 0, Abs@n}]; (* Michael Somos, May 14 2014 *)
a[ n_] := 2 n^2 + 2 - Boole[n == 0]; (* Michael Somos, May 14 2014 *)
CROSSREFS
Cf. similar sequences listed in A255843.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Number of points on surface of octahedron; also coordination sequence for cubic lattice: a(0) = 1; for n > 0, a(n) = 4n^2 + 2.
(Formerly M4115)
+10
75
1, 6, 18, 38, 66, 102, 146, 198, 258, 326, 402, 486, 578, 678, 786, 902, 1026, 1158, 1298, 1446, 1602, 1766, 1938, 2118, 2306, 2502, 2706, 2918, 3138, 3366, 3602, 3846, 4098, 4358, 4626, 4902, 5186, 5478, 5778, 6086, 6402, 6726, 7058, 7398, 7746, 8102, 8466
COMMENTS
Also, the number of regions the plane can be cut into by two overlapping concave (2n)-gons. - Joshua Zucker, Nov 05 2002
If X is an n-set and Y_i (i=1,2,3) are mutually disjoint 2-subsets of X then a(n-5) is equal to the number of 5-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Aug 26 2007
Also the least number of unit cubes required, at the n-th iteration, to surround a 3D solid built from unit cubes, in order to hide all its visible faces, starting with a unit cube. - R. J. Cano, Sep 29 2015
Also, coordination sequence for "tfs" 3D uniform tiling. - N. J. A. Sloane, Feb 10 2018
Also, the number of n-th order specular reflections arriving at a receiver point from an emitter point inside a cuboid with reflective faces. - Michael Schutte, Sep 18 2018
REFERENCES
H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (225) cF8
B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tilings #16 and #22.
R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 ( pdf).
FORMULA
Binomial transform of [1, 5, 7, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Nov 02 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=1, a(1)=6, a(2)=18, a(3)=38. - Harvey P. Dale, Nov 08 2011
Recurrence: n*a(n) = (n-2)*a(n-2) + 6*a(n-1), a(0)=1, a(1)=6. - Fung Lam, Apr 15 2014
a(n) = 2*d*Hypergeometric2F1(1-d, 1-n, 2, 2) where d=3, n>0. - Shel Kaphan, Feb 16 2023
Sum_{n>=0} 1/a(n) = 3/4 + Pi *sqrt(2)*coth( Pi/sqrt 2)/8 = 1.31858... - R. J. Mathar, Apr 27 2024
MATHEMATICA
Join[{1}, 4Range[40]^2+2] (* or *) Join[{1}, LinearRecurrence[{3, -3, 1}, {6, 18, 38}, 40]] (* Harvey P. Dale, Nov 08 2011 *)
PROG
(PARI) Vec(((1+x)/(1-x))^3 + O(x^100)) \\ Altug Alkan, Oct 26 2015
CROSSREFS
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Centered tetrahedral numbers.
(Formerly M3850)
+10
71
1, 5, 15, 35, 69, 121, 195, 295, 425, 589, 791, 1035, 1325, 1665, 2059, 2511, 3025, 3605, 4255, 4979, 5781, 6665, 7635, 8695, 9849, 11101, 12455, 13915, 15485, 17169, 18971, 20895, 22945, 25125, 27439, 29891, 32485, 35225, 38115
COMMENTS
Binomial transform of (1,4,6,4,0,0,0,...). - Paul Barry, Jul 01 2003
If X is an n-set and Y a fixed 4-subset of X then a(n-4) is equal to the number of 4-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = (2*n + 1)*(n^2 + n + 3)/3.
G.f.: (1+x)*(1+x^2)/(1-x)^4.
a(n) = C(n, 0) + 4*C(n, 1) + 6*C(n, 2) + 4*C(n, 3). - Paul Barry, Jul 01 2003
a(n) = binomial(n+3,n) + binomial(n+2,n-1) + binomial(n+1,n-2) + binomial(n,n-3). (modified by G. C. Greubel, Nov 30 2017)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=5, a(2)=15, a(3)=35. - Harvey P. Dale, Nov 03 2011
E.g.f.: (3 + 12*x + 9*x^2 + 2*x^3)*exp(x)/3. - G. C. Greubel, Nov 30 2017
MATHEMATICA
Table[(2n+1)(n^2+n+3)/3, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 5, 15, 35}, 40] (* Harvey P. Dale, Nov 03 2011 *)
PROG
(Magma) [(2*n+1)*(n^2+n+3)/3: n in [0..30]]; // G. C. Greubel, Nov 30 2017
CROSSREFS
(1/12)*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Coordination sequence T1 for Zeolite Code LTA and RHO.
+10
71
1, 4, 9, 17, 28, 42, 60, 81, 105, 132, 162, 196, 233, 273, 316, 362, 412, 465, 521, 580, 642, 708, 777, 849, 924, 1002, 1084, 1169, 1257, 1348, 1442, 1540, 1641, 1745, 1852, 1962, 2076, 2193, 2313, 2436, 2562, 2692, 2825, 2961, 3100, 3242, 3388, 3537, 3689
COMMENTS
Also, growth series for the affine Coxeter (or Weyl) groups B_3. - N. J. A. Sloane, Jan 11 2016
Also, coordination sequence for "rho" 3D uniform tiling. - N. J. A. Sloane, Feb 10 2018
REFERENCES
N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tilings #25 and 27.
W. M. Meier, D. H. Olson and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Ed., Elsevier, 1996.
FORMULA
a(5*m+k) = 40*m^2 + 16*k*m + one of 5 numbers depending on k, 0 <= k < 5 ( N. J. A. Sloane).
G.f.: (1-x^2)*(1-x^4)*(1-x^6)/((1-x)^4*(1-x^3)*(1-x^5)). This can also be written as (x+1)^3*(x^2+1)*(x^2-x+1)/((1-x)^3*(x^4+x^3+x^2+x+1)). - N. J. A. Sloane, Feb 10 2018
a(n) = 12/5 - 0^n + (8/5)*n^2 - (1/25)*(5+sqrt(5))*cos(2*Pi*n/5) - (1/25)*(5-sqrt(5))*cos(4*Pi*n/5). - Eric Simon Jacob, Feb 12 2023
MAPLE
(1-x^2)*(1-x^4)*(1-x^6)/((1-x)^4*(1-x^3)*(1-x^5));
seq(coeff(series(%, x, n+1), x, n), n=0..48);
CROSSREFS
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
a(n) = (2*n-1)*(5*n^2-5*n+6)/6.
+10
65
1, 8, 30, 77, 159, 286, 468, 715, 1037, 1444, 1946, 2553, 3275, 4122, 5104, 6231, 7513, 8960, 10582, 12389, 14391, 16598, 19020, 21667, 24549, 27676, 31058, 34705, 38627, 42834, 47336, 52143, 57265, 62712, 68494, 74621, 81103, 87950
FORMULA
G.f.: x*(1+x)*(1+3*x+x^2)/(1-x)^4. - Colin Barker, Mar 02 2012
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4), with a(1)=1, a(2)=8, a(3)=30, a(4)=77. - Harvey P. Dale, Aug 20 2012
E.g.f.: (-6 + 12*x + 15*x^2 + 10*x^3)*exp(x)/6 + 1. - G. C. Greubel, Dec 01 2017
MATHEMATICA
Table[(2n-1)(5n^2-5n+6)/6, {n, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 8, 30, 77}, 40] (* Harvey P. Dale, Aug 20 2012 *)
PROG
(PARI) { for (n=1, 1000, write("b063489.txt", n, " ", (2*n - 1)*(5*n^2 - 5*n + 6)/6) ) } \\ Harry J. Smith, Aug 23 2009
(Magma) [(2*n-1)*(5*n^2-5*n+6)/6: n in [1..30]]; // G. C. Greubel, Dec 01 2017
(PARI) x='x+O('x^30); Vec(serlaplace((-6 + 12*x + 15*x^2 + 10*x^3 )*exp(x)/6 + 1)) \\ G. C. Greubel, Dec 01 2017
CROSSREFS
1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Number of points on surface of cuboctahedron (or icosahedron): a(0) = 1; for n > 0, a(n) = 10n^2 + 2. Also coordination sequence for f.c.c. or A_3 or D_3 lattice.
(Formerly M4834)
+10
64
1, 12, 42, 92, 162, 252, 362, 492, 642, 812, 1002, 1212, 1442, 1692, 1962, 2252, 2562, 2892, 3242, 3612, 4002, 4412, 4842, 5292, 5762, 6252, 6762, 7292, 7842, 8412, 9002, 9612, 10242, 10892, 11562, 12252, 12962, 13692, 14442, 15212, 16002
COMMENTS
Sequence found by reading the segment (1, 12) together with the line from 12, in the direction 12, 42, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 18 2012
REFERENCES
H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (225) cF4
B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #1.
R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
S. Rosen, Wizard of the Dome: R. Buckminster Fuller; Designer for the Future. Little, Brown, Boston, 1969, p. 109.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 ( pdf).
FORMULA
G.f.: (1+x)*(1+8*x+x^2)/(1-x)^3. - Simon Plouffe in his 1992 dissertation
G.f. for coordination sequence for A_n lattice is (1-z)^(-n) * Sum_{i=0..n} binomial(n, i)^2*z^i. [Bacher et al.]
a(n) = 12 + 24*(n-1) + 8* A000217(n-2) + 6* A000290(n-1). The properties of the cuboctahedron, namely, its number of vertices (12), edges (24), and faces as well as face-type (8 triangles and 6 squares), are involved in this formula. - Peter M. Chema, Mar 26 2017
E.g.f.: -1 + 2*(1 + 5*x + 5*x^2)*exp(x). - G. C. Greubel, May 25 2023
Sum{n>=0} 1/a(n) = 3/4 + Pi*sqrt(5)*coth(Pi/sqrt 5)/20 = 1.14624... - R. J. Mathar, Apr 27 2024
MATHEMATICA
Join[{1}, 10*Range[40]^2+2] (* or *) Join[{1}, LinearRecurrence[{3, -3, 1}, {12, 42, 92}, 40]] (* Harvey P. Dale, May 28 2014 *)
PROG
(PARI) a(n)=if(n<0, 0, 10*n^2+1+(n>0))
(Magma) [n eq 0 select 1 else 2*(5*n^2+1): n in [0..55]]; // G. C. Greubel, May 25 2023
(SageMath) [2*(5*n^2 + 1)-int(n==0) for n in range(56)] # G. C. Greubel, May 25 2023
CROSSREFS
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Search completed in 0.037 seconds
|