Displaying 1-6 of 6 results found.
page
1
Number of nX3 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
+10
1
0, 4, 1, 2, 3, 5, 8, 16, 21, 34, 55, 89, 144, 236, 377, 610, 987, 1597, 2584, 4184, 6765, 10946, 17711, 28657, 46368, 75028, 121393, 196418, 317811, 514229, 832040, 1346272, 2178309, 3524578, 5702887, 9227465, 14930352, 24157820, 39088169
FORMULA
Empirical: a(n) = a(n-1) +a(n-2) +a(n-6) -a(n-7) -a(n-8)
EXAMPLE
All solutions for n=5
..0..0..0. .0..0..0. .0..0..0
..0..0..0. .0..0..0. .0..0..0
..0..0..0. .0..0..0. .1..1..1
..1..1..1. .0..0..0. .1..1..1
..1..1..1. .0..0..0. .1..1..1
Number of n X 4 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
+10
1
1, 8, 2, 3, 7, 6, 9, 20, 22, 35, 59, 90, 145, 240, 378, 611, 991, 1598, 2585, 4188, 6766, 10947, 17715, 28658, 46369, 75032, 121394, 196419, 317815, 514230, 832041, 1346276, 2178310, 3524579, 5702891, 9227466, 14930353, 24157824, 39088170
FORMULA
Empirical: a(n) = a(n-1) +a(n-2) +a(n-6) -a(n-7) -a(n-8).
EXAMPLE
Some solutions for n=5
..0..0..0..0. .0..1..0..1. .0..0..0..0. .0..0..0..0. .0..0..1..1
..0..0..0..0. .0..1..0..1. .0..0..0..0. .0..0..0..0. .0..0..1..1
..1..1..1..1. .1..1..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..1
..1..1..1..1. .0..1..0..1. .1..1..1..1. .0..0..0..0. .0..0..1..1
..1..1..1..1. .0..1..0..1. .1..1..1..1. .0..0..0..0. .0..0..1..1
Number of nX5 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
+10
1
0, 32, 3, 7, 9, 12, 17, 41, 42, 67, 109, 172, 277, 461, 722, 1167, 1889, 3052, 4937, 8001, 12922, 20907, 33829, 54732, 88557, 143301, 231842, 375127, 606969, 982092, 1589057, 2571161, 4160202, 6731347, 10891549, 17622892, 28514437, 46137341
FORMULA
Empirical: a(n) = a(n-1) +a(n-2) +a(n-6) -a(n-7) -a(n-8) for n>11
EXAMPLE
Some solutions for n=5
..0..1..0..0..0. .0..0..0..1..0. .0..0..0..0..0. .0..0..1..1..1
..0..1..0..0..0. .0..0..0..1..0. .0..0..0..0..0. .0..0..1..1..1
..1..1..0..0..0. .0..0..0..1..1. .1..1..1..1..1. .0..0..1..1..1
..0..1..0..0..0. .0..0..0..1..0. .1..1..1..1..1. .0..0..1..1..1
..0..1..0..0..0. .0..0..0..1..0. .1..1..1..1..1. .0..0..1..1..1
Number of nX6 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
+10
1
1, 32, 5, 6, 12, 19, 22, 48, 53, 103, 169, 272, 446, 863, 1346, 2395, 4154, 7334, 12706, 22695, 39500, 70143, 123441, 218719, 385766, 684533, 1208762, 2142932, 3791443, 6719743, 11895717, 21085505, 37340353, 66178799, 117235756, 207768546
EXAMPLE
Some solutions for n=5
..0..0..1..1..0..1. .0..0..0..0..1..0. .0..0..0..1..1..1. .0..0..0..0..0..0
..0..0..1..1..0..1. .0..0..0..0..1..0. .0..0..0..1..1..1. .0..0..0..0..0..0
..0..0..1..1..0..0. .0..0..0..0..1..1. .0..0..0..1..1..1. .1..1..1..1..1..1
..0..0..1..1..0..1. .0..0..0..0..1..0. .0..0..0..1..1..1. .1..1..1..1..1..1
..0..0..1..1..0..1. .0..0..0..0..1..0. .0..0..0..1..1..1. .1..1..1..1..1..1
Number of n X 7 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
+10
1
0, 64, 8, 9, 17, 22, 31, 83, 92, 172, 309, 549, 923, 1830, 3021, 5580, 10091, 18344, 33025, 61470, 111014, 205198, 376471, 694579, 1277419, 2365958, 4360085, 8074209, 14929946, 27656016, 51194508, 94924809, 175864241, 326176032, 604808134
EXAMPLE
Some solutions for n=5
..0..0..0..0..0..1..1. .0..0..0..0..1..1..1. .0..0..0..1..1..0..1
..0..0..0..0..0..1..1. .0..0..0..0..1..1..1. .0..0..0..1..1..0..1
..0..0..0..0..0..1..1. .0..0..0..0..1..1..1. .0..0..0..1..1..0..0
..0..0..0..0..0..1..1. .0..0..0..0..1..1..1. .0..0..0..1..1..0..1
..0..0..0..0..0..1..1. .0..0..0..0..1..1..1. .0..0..0..1..1..0..1
Number of n X n 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
+10
0
0, 4, 1, 3, 9, 19, 31, 199, 330, 1377, 6627, 23223, 113179, 849856, 5207476, 43357615
EXAMPLE
Some solutions for n=5
..0..1..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..1..1..1
..0..1..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..1..1..1
..1..1..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..1..1..1
..0..1..0..0..0. .0..0..0..0..0. .1..1..1..1..1. .0..0..1..1..1
..0..1..0..0..0. .0..0..0..0..0. .0..0..1..0..0. .0..0..1..1..1
Search completed in 0.006 seconds
|