Displaying 1-6 of 6 results found.
page
1
Number of nX3 0..1 arrays with every element equal to 1, 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
+10
2
1, 18, 56, 223, 849, 3387, 13075, 51006, 199243, 777845, 3035261, 11848853, 46252538, 180542983, 704739373, 2750937235, 10738195965, 41916200522, 163618636603, 638680511133, 2493070208921, 9731625088447, 37987108531520
FORMULA
Empirical: a(n) = 4*a(n-1) +4*a(n-3) -17*a(n-4) -25*a(n-5) +23*a(n-6) +33*a(n-7) +41*a(n-8) -145*a(n-9) -147*a(n-10) +24*a(n-11) +384*a(n-12) +267*a(n-13) -72*a(n-14) -207*a(n-15) -61*a(n-16) +51*a(n-17) +10*a(n-18) -14*a(n-19) -4*a(n-20) for n>21
EXAMPLE
Some solutions for n=7
..0..0..0. .0..0..0. .0..0..1. .0..0..0. .0..1..0. .0..1..1. .0..1..0
..0..0..0. .1..1..1. .1..0..1. .1..0..1. .1..0..0. .0..1..0. .0..1..0
..1..1..1. .0..1..0. .1..0..1. .1..1..1. .0..0..1. .0..1..0. .1..0..1
..0..0..0. .1..0..1. .0..1..0. .1..0..1. .1..1..1. .1..1..0. .0..0..0
..1..0..1. .0..0..0. .1..0..0. .0..1..0. .0..0..0. .0..0..1. .1..1..1
..0..1..0. .1..1..1. .1..1..1. .0..1..0. .1..1..1. .1..1..0. .0..0..0
..0..0..1. .1..1..1. .0..0..0. .0..1..0. .0..0..1. .0..0..0. .0..0..0
Number of nX4 0..1 arrays with every element equal to 1, 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
+10
1
2, 52, 223, 996, 5180, 26926, 135226, 690918, 3547086, 18140017, 92825596, 475512514, 2435109783, 12469673140, 63863260360, 327072500829, 1675063501190, 8578763890816, 43935874769921, 225015889086384, 1152411732625826
FORMULA
Empirical recurrence of order 69 (see link above)
EXAMPLE
Some solutions for n=7
..0..1..0..1. .0..1..0..1. .0..0..0..0. .0..1..0..0. .0..0..0..1
..0..1..0..1. .0..1..1..0. .1..1..1..1. .1..0..1..1. .1..1..0..1
..1..0..0..1. .1..1..1..1. .0..0..1..0. .0..1..1..1. .1..0..0..0
..0..1..0..1. .0..1..0..1. .1..1..1..0. .1..1..0..0. .0..1..1..1
..0..0..1..1. .1..0..1..0. .0..1..1..1. .0..1..1..0. .1..1..1..1
..0..1..0..1. .1..0..1..0. .0..0..1..0. .0..1..1..1. .0..1..0..0
..1..1..0..1. .0..1..0..0. .1..1..0..1. .0..0..0..1. .0..1..1..1
Number of nX5 0..1 arrays with every element equal to 1, 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
+10
1
3, 174, 849, 5180, 49850, 384118, 2837337, 23616114, 189866553, 1494671805, 12070219670, 97177956375, 777079451436, 6244397567388, 50197589553023, 402810859823568, 3234998934835257, 25988345094585538, 208691785797536727
EXAMPLE
Some solutions for n=5
..0..1..1..0..0. .0..0..1..1..0. .0..1..0..1..1. .0..1..0..0..1
..0..0..0..1..1. .1..0..1..1..0. .0..0..1..1..0. .0..0..1..1..0
..1..1..1..0..0. .1..1..1..1..1. .1..0..0..0..0. .1..1..1..1..1
..0..0..0..1..1. .0..1..1..0..1. .0..1..0..0..1. .1..0..1..0..1
..0..1..1..0..0. .0..0..1..0..0. .0..1..0..1..0. .0..0..1..1..0
Number of nX6 0..1 arrays with every element equal to 1, 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
+10
1
5, 604, 3387, 26926, 384118, 3935913, 38706835, 445387553, 4869394793, 51744525546, 569151489101, 6237785819571, 67664627100820, 738872699452020, 8077145944657670, 88048395398145403, 960752441012887207
EXAMPLE
Some solutions for n=4
..0..0..1..0..0..1. .0..1..1..1..0..1. .0..0..1..1..1..0. .0..1..0..1..0..0
..1..0..1..1..1..0. .1..0..0..0..1..0. .0..1..0..1..0..1. .0..1..0..1..1..1
..1..1..1..1..0..0. .0..1..1..1..0..0. .0..1..1..0..1..0. .0..1..1..1..1..0
..1..0..0..1..1..1. .1..0..0..0..1..0. .1..0..0..0..0..1. .1..0..0..1..0..1
Number of nX7 0..1 arrays with every element equal to 1, 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
+10
1
8, 2048, 13075, 135226, 2837337, 38706835, 509195874, 8032883165, 118750882425, 1707709022909, 25502618858251, 378609557364591, 5566330211694048, 82417823620354907, 1220987680054491593, 18041261703098651443
EXAMPLE
Some solutions for n=4
..0..0..1..1..0..1..1. .0..0..0..0..0..0..0. .0..0..1..0..0..1..0
..1..1..0..1..0..0..0. .0..1..1..1..1..1..0. .0..1..1..1..0..0..1
..0..1..0..1..0..1..0. .1..0..0..1..0..0..1. .1..1..1..0..0..1..0
..1..0..0..1..1..0..1. .1..1..1..1..1..1..0. .0..0..1..1..1..1..0
Number of n X n 0..1 arrays with every element equal to 1, 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
+10
0
0, 4, 56, 996, 49850, 3935913, 509195874, 190487814086, 121220201152514
EXAMPLE
Some solutions for n=5
..0..1..0..0..1. .0..1..1..0..0. .0..1..0..1..1. .0..1..1..0..1
..1..0..1..0..1. .1..0..1..1..0. .1..0..0..0..0. .1..0..0..1..1
..1..1..1..0..1. .1..1..1..1..1. .0..1..0..0..1. .0..1..1..1..0
..1..0..0..1..0. .0..1..1..0..0. .0..1..0..1..0. .1..1..1..1..0
..1..0..1..1..1. .1..0..0..1..1. .1..0..1..1..0. .0..0..1..0..1
Search completed in 0.007 seconds
|