[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a298230 -id:a298230
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of nX3 0..1 arrays with every element equal to 0, 1, 3, 4 or 5 king-move adjacent elements, with upper left element zero.
+10
1
3, 4, 5, 17, 12, 100, 219, 498, 1999, 4953, 13928, 45164, 120865, 355474, 1065723, 2987665, 8792232, 25703174, 73648001, 215508142, 625811209, 1809121989, 5271819208, 15292192284, 44347119815, 128947618162, 374125557341
OFFSET
1,1
COMMENTS
Column 3 of A298230.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +4*a(n-2) +13*a(n-3) -14*a(n-4) -29*a(n-5) -23*a(n-6) +29*a(n-7) +56*a(n-8) -30*a(n-9) -7*a(n-10) +41*a(n-11) +2*a(n-12) -26*a(n-13) -12*a(n-14) -15*a(n-15) -7*a(n-16) +16*a(n-17) +2*a(n-18) for n>19
EXAMPLE
Some solutions for n=7
..0..1..1. .0..1..0. .0..1..0. .0..0..1. .0..0..1. .0..1..0. .0..0..1
..0..1..1. .0..1..0. .0..1..0. .0..0..1. .0..0..0. .0..1..0. .0..0..1
..1..1..0. .1..1..1. .0..0..0. .1..1..1. .1..0..1. .0..0..0. .1..1..1
..1..1..0. .0..1..0. .1..0..1. .1..1..0. .0..0..1. .1..0..1. .1..1..0
..1..0..0. .1..1..0. .0..1..0. .0..1..0. .0..1..1. .0..1..0. .0..0..1
..1..1..0. .0..1..1. .1..1..1. .1..1..1. .0..0..1. .1..1..1. .0..0..0
..1..1..0. .0..1..1. .1..1..0. .1..1..0. .0..0..1. .0..1..1. .1..0..1
CROSSREFS
Cf. A298230.
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 15 2018
STATUS
approved
Number of nX4 0..1 arrays with every element equal to 0, 1, 3, 4 or 5 king-move adjacent elements, with upper left element zero.
+10
1
5, 16, 17, 195, 490, 2606, 15646, 74688, 397909, 2172360, 11380566, 60631430, 325152997, 1728286947, 9215894735, 49218645591, 262327473375, 1399145008769, 7465029674488, 39810676235989, 212342781125559, 1132682956110103
OFFSET
1,1
COMMENTS
Column 4 of A298230.
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) +7*a(n-2) +53*a(n-3) -232*a(n-4) -308*a(n-5) -590*a(n-6) +4313*a(n-7) +3326*a(n-8) -275*a(n-9) -33661*a(n-10) -3750*a(n-11) +34619*a(n-12) +97423*a(n-13) -102142*a(n-14) -129702*a(n-15) +42710*a(n-16) +453288*a(n-17) -191477*a(n-18) -553360*a(n-19) -215979*a(n-20) +1609482*a(n-21) -195851*a(n-22) -2386398*a(n-23) -546805*a(n-24) +4132384*a(n-25) +1003867*a(n-26) -7275172*a(n-27) -207426*a(n-28) +9905631*a(n-29) +3119003*a(n-30) -10615571*a(n-31) -5141402*a(n-32) +8332419*a(n-33) +8109079*a(n-34) -3922996*a(n-35) -10219033*a(n-36) -7778489*a(n-37) +4353156*a(n-38) +5882154*a(n-39) -2124795*a(n-40) -9254272*a(n-41) +159018*a(n-42) +4829413*a(n-43) +7423302*a(n-44) +7099748*a(n-45) +12036958*a(n-46) +7705063*a(n-47) -1434288*a(n-48) -13492716*a(n-49) -11913233*a(n-50) -4219196*a(n-51) +2931767*a(n-52) +3319849*a(n-53) +645459*a(n-54) -167241*a(n-55) +152274*a(n-56) +1027296*a(n-57) +441490*a(n-58) -53356*a(n-59) -306724*a(n-60) -139701*a(n-61) -13875*a(n-62) +12538*a(n-63) +10063*a(n-64) -527*a(n-65) -84*a(n-66) for n>68
EXAMPLE
Some solutions for n=7
..0..1..1..0. .0..1..0..0. .0..1..1..0. .0..1..0..1. .0..0..1..0
..1..0..1..1. .1..0..0..0. .0..1..1..0. .0..1..0..1. .0..0..1..0
..0..0..1..0. .1..1..1..0. .0..0..1..1. .1..1..0..0. .0..0..1..1
..0..1..1..1. .0..1..0..1. .1..0..1..1. .0..1..1..0. .0..0..1..1
..0..0..1..1. .1..0..0..0. .0..0..1..1. .0..1..0..0. .1..0..1..1
..0..0..0..1. .1..1..0..1. .1..0..0..0. .1..1..0..1. .0..0..1..0
..1..0..1..0. .1..1..0..1. .0..1..0..0. .1..1..0..1. .0..0..1..0
CROSSREFS
Cf. A298230.
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 15 2018
STATUS
approved
Number of nX5 0..1 arrays with every element equal to 0, 1, 3, 4 or 5 king-move adjacent elements, with upper left element zero.
+10
1
8, 50, 12, 490, 1749, 7038, 71212, 440402, 2785299, 22451954, 156085555, 1080413616, 8143080250, 58022725348, 413685226967, 3035994512259, 21816461282403, 157007597256407, 1140825200514746, 8225611070991142
OFFSET
1,1
COMMENTS
Column 5 of A298230.
LINKS
EXAMPLE
Some solutions for n=7
..0..1..1..1..0. .0..1..1..0..0. .0..0..1..1..0. .0..0..0..1..0
..0..1..1..0..1. .0..1..1..0..0. .0..0..1..1..0. .1..1..0..0..1
..0..0..1..0..0. .0..0..1..0..0. .1..1..1..0..0. .1..1..1..1..1
..1..0..1..0..0. .0..1..1..0..1. .0..0..1..0..0. .0..1..0..1..0
..0..1..1..1..0. .0..1..1..0..0. .0..0..0..1..1. .0..1..1..0..1
..0..0..1..0..0. .0..0..0..0..0. .0..1..1..1..1. .0..0..1..0..0
..1..0..0..0..1. .1..0..0..1..1. .1..0..1..0..0. .0..0..1..0..0
CROSSREFS
Cf. A298230.
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 15 2018
STATUS
approved
Number of nX6 0..1 arrays with every element equal to 0, 1, 3, 4 or 5 king-move adjacent elements, with upper left element zero.
+10
1
13, 112, 100, 2606, 7038, 110320, 1166270, 10448313, 136604409, 1503351175, 16286627637, 194230966568, 2198476953879, 24700789917927, 286624459000212, 3264613409193272, 37095755700798148, 426284736792747449
OFFSET
1,1
COMMENTS
Column 6 of A298230.
LINKS
EXAMPLE
Some solutions for n=6
..0..0..1..1..0..0. .0..1..0..0..0..0. .0..1..0..0..0..1. .0..1..0..0..0..0
..0..0..1..1..1..1. .1..1..1..1..0..0. .0..1..0..0..1..0. .1..0..0..1..0..0
..1..1..0..1..0..0. .1..1..0..1..1..0. .1..1..1..0..1..1. .1..1..0..0..1..1
..1..1..0..0..0..0. .0..0..1..1..0..1. .0..1..0..0..1..0. .1..1..0..0..1..1
..0..1..0..1..1..1. .0..0..1..0..0..0. .1..1..0..1..1..1. .0..0..1..0..1..0
..0..1..0..1..1..1. .1..0..0..1..0..0. .0..1..1..0..1..0. .0..0..0..0..0..1
CROSSREFS
Cf. A298230.
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 15 2018
STATUS
approved
Number of nX7 0..1 arrays with every element equal to 0, 1, 3, 4 or 5 king-move adjacent elements, with upper left element zero.
+10
1
21, 348, 219, 15646, 71212, 1166270, 25406586, 353699661, 6688607300, 128037046425, 2233455463049, 41229191798129, 775524676522648, 14045073377885063, 259265856410756757, 4817848310541414512
OFFSET
1,1
COMMENTS
Column 7 of A298230.
LINKS
EXAMPLE
Some solutions for n=5
..0..0..0..1..0..0..0. .0..1..1..1..1..1..0. .0..1..1..0..1..0..0
..1..1..0..0..0..0..0. .1..1..0..0..1..0..1. .0..1..1..1..1..1..1
..1..1..0..1..1..1..1. .1..1..0..0..1..0..0. .1..1..0..0..1..0..0
..0..0..0..1..1..0..0. .1..1..0..1..1..0..0. .1..1..0..0..1..0..0
..1..1..0..0..0..0..0. .1..1..0..1..1..0..0. .0..1..1..1..1..1..1
CROSSREFS
Cf. A298230.
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 15 2018
STATUS
approved
Number of n X n 0..1 arrays with every element equal to 0, 1, 3, 4 or 5 king-move adjacent elements, with upper left element zero.
+10
0
1, 4, 5, 195, 1749, 110320, 25406586, 7311722995, 11308912804354
OFFSET
1,2
COMMENTS
Diagonal of A298230.
EXAMPLE
Some solutions for n=6
..0..0..1..1..0..0. .0..0..1..1..0..1. .0..1..1..0..1..0. .0..0..1..1..0..1
..1..1..1..1..1..1. .0..0..1..1..1..0. .1..1..0..1..1..1. .0..0..1..1..1..0
..1..1..0..0..1..1. .1..0..0..0..1..1. .1..0..0..0..1..0. .0..1..1..0..0..0
..0..1..0..0..0..1. .0..1..0..0..1..1. .1..0..0..1..1..0. .1..0..1..1..1..0
..1..1..1..0..1..1. .1..1..1..1..1..0. .1..1..0..1..0..0. .0..0..0..0..0..0
..0..1..1..1..1..0. .1..1..0..1..1..0. .1..1..1..0..0..1. .1..0..1..0..0..1
CROSSREFS
Cf. A298230.
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 15 2018
STATUS
approved

Search completed in 0.009 seconds