[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a296996 -id:a296996
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of ways to place 3 points on an n X n point grid so that no point is equally distant from two other points on the same row or the same column.
+10
3
0, 4, 78, 544, 2260, 7068, 18298, 41472, 85032, 161300, 287430, 486624, 789308, 1234604, 1871730, 2761728, 3979088, 5613732, 7772862, 10583200, 14193060, 18774844, 24527338, 31678464, 40487800, 51249588, 64295478, 79997792, 98772492, 121082700, 147441890, 178417664
OFFSET
1,2
COMMENTS
Rotations and reflections of a placement are counted. If they are to be ignored, see A296996.
The condition of placements is also known as "no 3-term arithmetic progressions".
LINKS
FORMULA
a(n) = (n^6 - 3*n^4 - 3*n^3 + 8*n^2)/6 - (n == 1 (mod 2))*n/2.
a(n) = (n^6 - 3*n^4 - 3*n^3 + 8*n^2)/6 for n even,
a(n) = (n^6 - 3*n^4 - 3*n^3 + 8*n^2 - 3*n)/6 for n odd.
From Colin Barker, Dec 23 2017: (Start)
G.f.: 2*x^2*(2 + 29*x + 93*x^2 + 82*x^3 + 32*x^4 + x^5 + x^6) / ((1 - x)^7*(1 + x)^2).
a(n) = 5*a(n-1) - 8*a(n-2) + 14*a(n-4) - 14*a(n-5) + 8*a(n-7) - 5*a(n-8) + a(n-9) for n>9.
(End)
MATHEMATICA
Array[(#^6 - 3 #^4 - 3 #^3 + 8 #^2)/6 - # Boole[OddQ@ #]/2 &, 32] (* Michael De Vlieger, Dec 23 2017 *)
CoefficientList[ Series[-2x (2 + 29x + 93x^2 + 82x^3 + 32x^4 + x^5 + x^6)/((x - 1)^7 (x + 1)^2), {x, 0, 31}], x] (* or *)
LinearRecurrence[{5, -8, 0, 14, -14, 0, 8, -5, 1}, {0, 4, 78, 544, 2260, 7068, 18298, 41472, 85032}, 32] (* Robert G. Wilson v, Jan 15 2018 *)
PROG
(PARI) concat(0, Vec(2*x^2*(2 + 29*x + 93*x^2 + 82*x^3 + 32*x^4 + x^5 + x^6) / ((1 - x)^7*(1 + x)^2) + O(x^40))) \\ Colin Barker, Dec 23 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Dec 23 2017
STATUS
approved
Number of nonequivalent (mod D_8) ways to place 4 points on an n X n point grid so that no point is equally distant from two other points on the same row or the same column.
+10
1
0, 1, 17, 226, 1550, 7221, 26120, 78484, 206242, 486640, 1056377, 2137506, 4085167, 7430276, 12964014, 21801632, 35520743, 56249658, 86880957, 131186720, 194133425, 282024809, 402949496, 566950056, 786640454, 1077397347, 1458190435, 1951789266, 2585856152, 3393157995
OFFSET
1,3
COMMENTS
Rotations and reflections of placements are not counted. If they are to be counted see A296998.
The condition of placements is also known as "no 3-term arithmetic progressions".
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,-1,-4,4,-4,5,1,-5,6,-10,8,-8,10,-6,5,-1,-5,4,-4,4,1,-3,1).
FORMULA
a(n) = (n^8 - 6*n^6 - 12*n^5 + 64*n^4 + 8*n^3 - 136*n^2 + (n == 1 (mod 2))*(14*n^4 - 96*n^3 + 162*n^2 - 92*n + 93))/192 + (n == 2 (mod 6))*n/6 + (n == 2 (mod 4))*n/4 + (n == 5 (mod 6))*(n + 1)/6.
a(n) = (n^8 - 6*n^6 - 12*n^5)/192 + b(n) + c(n), where
b(n) = (64*n^4 + 8*n^3 - 136*n^2)/192 for n even,
b(n) = (78*n^4 - 88*n^3 + 26*n^2 - 92*n + 93)/192 for n odd,
c(n) = 0 for n == 0, 1, 3, 4, 7, 9 (mod 12),
c(n) = n/4 for n == 6, 10 (mod 12),
c(n) = n/6 for n == 8 (mod 12),
c(n) = 5/12*n for n == 2 (mod 12),
c(n) = (n + 1)/6 for n == 5, 11 (mod 12).
Conjectures from Colin Barker, Jan 21 2018: (Start)
G.f.: x^2*(1 + 14*x + 176*x^2 + 893*x^3 + 2861*x^4 + 6847*x^5 + 12704*x^6 + 20412*x^7 + 27052*x^8 + 33142*x^9 + 33910*x^10 + 33289*x^11 + 26586*x^12 + 20709*x^13 + 12212*x^14 + 7178*x^15 + 2639*x^16 + 1094*x^17 + 134*x^18 + 68*x^19 - 3*x^20 + 2*x^21) / ((1 - x)^9*(1 + x)^5*(1 - x + x^2)*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = 3*a(n-1) - a(n-2) - 4*a(n-3) + 4*a(n-4) - 4*a(n-5) + 5*a(n-6) + a(n-7) - 5*a(n-8) + 6*a(n-9) - 10*a(n-10) + 8*a(n-11) - 8*a(n-13) + 10*a(n-14) - 6*a(n-15) + 5*a(n-16) - a(n-17) - 5*a(n-18) + 4*a(n-19) - 4*a(n-20) + 4*a(n-21) + a(n-22) - 3*a(n-23) + a(n-24) for n>24.
(End)
MATHEMATICA
Array[(#^8 - 6 #^6 - 12 #^5 + 64 #^4 + 8 #^3 - 136 #^2 + Boole[OddQ@ #] (14 #^4 - 96 #^3 + 162 #^2 - 92 # + 93))/192 + Boole[Mod[#, 6] == 2] #/6 + Boole[Mod[#, 4] == 2] #/4 + Boole[Mod[#, 6] == 5] (# + 1)/6 &, 30] (* Michael De Vlieger, Jan 21 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Jan 21 2018
STATUS
approved

Search completed in 0.004 seconds