[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a272874 -id:a272874
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of growth constant in random Fibonacci sequence.
+10
5
1, 2, 0, 5, 5, 6, 9, 4, 3, 0, 4, 0, 0, 5, 9, 0, 3, 1, 1, 7, 0, 2, 0, 2, 8, 6, 1, 7, 7, 8, 3, 8, 2, 3, 4, 2, 6, 3, 7, 7, 1, 0, 8, 9, 1, 9, 5, 9, 7, 6, 9, 9, 4, 4, 0, 4, 7, 0, 5, 5, 2, 2, 0, 3, 5, 5, 1, 8, 3, 4, 7, 9, 0, 3, 5, 9, 1, 6, 7, 4, 6, 9, 1, 7, 6, 4, 1, 8, 2, 6, 9, 5, 7, 8, 0, 5, 2, 5
OFFSET
1,2
COMMENTS
Real zero of x^3 + x^2 - x - 2. - Charles R Greathouse IV, May 28 2011
This is the infinite nested radical sqrt(1+sqrt(-1+sqrt(1+sqrt(-1+...)))), evaluated as the limit for an increasing (even) number of terms (an odd number of terms gives always 1) and using the main branch of the complex sqrt(z) function. This real-valued constant is in fact the unique attractor of the complex mapping M(z)=sqrt(1+sqrt(-1+z)), with its attraction domain covering the whole complex plane, excluding z = 1, the other invariant point of M(z). Closely related is A272874. - Stanislav Sykora, May 08 2016
From Wolfdieter Lang, Oct 17 2022: (Start)
This equals r0 - 1/3 where r0 is the real root of y^3 - (4/3)*y - 43/27.
The other roots of x^3 + x^2 - x - 2 are (w1*(4*(43 + 3*sqrt(177)))^(1/3) + w2*(4*(43 - 3*sqrt(177)))^(1/3) - 2)/6 = -1.1027847152... + 0.6654569511...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 and w2 = (-1 - sqrt(3)*i)/2 are the complex roots of x^3 - 1.
Using hyperbolic functions these roots are -(1 + 2*cosh((1/3)*arccosh(43/16)) - 2*sqrt(3)*sinh((1/3)*arccosh(43/16))*i)/3, and its complex conjugate.
(End)
LINKS
Elise Janvresse, Benoît Rittaud and Thierry De La Rue, Growth rate for the expected value of a generalized random Fibonacci sequence, arXiv:0804.2400 [math.PR], 2008.
Benoît Rittaud, On the Average Growth of Random Fibonacci Sequences, Journal of Integer Sequences, 10 (2007), Article 07.2.4.
Benoît Rittaud, Elise Janvresse, Emmanuel Lesigne and Jean-Christophe Novelli, Quand les maths se font discrètes, Le Pommier, 2008 (ISBN 978-2-7465-0370-0). See p. 119. [Broken link]
FORMULA
In the book by Benoît Rittaud et al. it is stated that this number is cube_root(43/54+sqrt(59/108))+cube_root(43/54-sqrt(59/108))-1/3. - Eric Desbiaux, Sep 13 2008, Oct 17 2008
The largest real solution of x = sqrt(1+sqrt(-1+x)). - Stanislav Sykora, May 08 2016
From Wolfdieter Lang, Oct 17 2022: (Start)
Equals ((4*(43 + 3*sqrt(177)))^(1/3) + 16*(4*(43 + 3*sqrt(177)))^(-1/3) - 2)/6.
Equals ((4*(43 + 3*sqrt(177)))^(1/3) + (4*(43 - 3*sqrt(177)))^(1/3) - 2)/6.
Equals (4*cosh((1/3)*arccosh(43/16)) - 1)/3. (End)
EXAMPLE
1.20556943040059031170202861778382342637710891959769944...
MAPLE
Digits := 80 ; fsolve( x^3-2*x^2-1, x, 2.2..2.3)-1.0 ; # R. J. Mathar, Apr 23 2008
MATHEMATICA
RealDigits[Root[x^3 + x^2 - x - 2, x, 1], 10, 98] // First (* Jean-François Alcover, Aug 06 2014 *)
PROG
(PARI) real(polroots(x^3+x^2-x-2)[1]) \\ Charles R Greathouse IV, May 28 2011
(PARI) polrootsreal(x^3+x^2-x-2)[1] \\ Charles R Greathouse IV, May 14 2014
CROSSREFS
KEYWORD
easy,nonn,cons,nice
AUTHOR
Jonathan Vos Post, Apr 16 2008
EXTENSIONS
More terms from R. J. Mathar, Apr 23 2008
More terms from Jean-François Alcover, Aug 06 2014
STATUS
approved
Characteristic polynomials of a square matrix based on A051731 where A051731(1,N)=1 and A051731(N,N)=0 and where N=size of matrix, analogous to the Redheffer matrix.
+10
2
1, 1, -1, -1, -1, 1, -1, 0, 2, -1, 0, 0, 2, -3, 1, -1, 2, 1, -5, 4, -1, 1, -3, 5, -8, 9, -5, 1, -1, 4, -4, -5, 15, -14, 6, -1, 0, -1, 6, -17, 29, -31, 20, -7, 1, 0, 0, 2, -13, 36, -55, 50, -27, 8, -1, 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1
OFFSET
0,9
COMMENTS
From Mats Granvik, Sep 30 2017: (Start)
Conjecture: The largest absolute value of the eigenvalues of these characteristic polynomials appear to have the same prime signature in the factorization of the matrix sizes N.
In other words: Let b(N) equal the sequence of the largest absolute values of the eigenvalues of the characteristic polynomials of the matrices of size N. b(N) is then a sequence of truncated eigenvalues starting:
b(N=1..infinity)
= 1.00000, 1.61803, 1.61803, 2.00000, 1.61803, 2.20557, 1.61803, 2.32472, 2.00000, 2.20557, 1.61803, 2.67170, 1.61803, 2.20557, 2.20557, 2.61803, 1.61803, 2.67170, 1.61803, 2.67170, 2.20557, 2.20557, 1.61803, 3.08032, 2.00000, 2.20557, 2.32472, 2.67170, 1.61803, 2.93796, 1.61803, 2.89055, 2.20557, 2.20557, 2.20557, 3.21878, 1.61803, 2.20557, 2.20557, 3.08032, 1.61803, 2.93796, 1.61803, 2.67170, 2.67170, 2.20557, 1.61803, 3.45341, 2.00000, 2.67170, 2.20557, 2.67170, 1.61803, 3.08032, 2.20557, 3.08032, 2.20557, 2.20557, 1.61803, 3.53392, 1.61803, 2.20557, 2.67170, ...
It then appears that for n = 1,2,3,4,5,...,infinity we have the table:
Prime signature: b(Axxxxxx(n)) = Largest abs(eigenvalue):
p^0 : b(1) = 1.0000000000000000000000000000...
p : b(A000040(n)) = 1.6180339887498949025257388711...
p^2 : b(A001248(n)) = 2.0000000000000000000000000000...
p*q : b(A006881(n)) = 2.2055694304005917238953315973...
p^3 : b(A030078(n)) = 2.3247179572447480566665944934...
p^2*q : b(A054753(n)) = 2.6716998816571604358216518448...
p^4 : b(A030514(n)) = 2.6180339887498917939012699207...
p^3*q : b(A065036(n)) = 3.0803227214906021558249449299...
p*q*r : b(A007304(n)) = 2.9379558827528557962693867011...
p^5 : b(A050997(n)) = 2.8905508875432590620846440288...
p^2*q^2 : b(A085986(n)) = 3.2187765853016649941764626419...
p^4*q : b(A178739(n)) = 3.4534111136673804054453285061...
p^2*q*r : b(A085987(n)) = 3.5339198574905377192578725953...
p^6 : b(A030516(n)) = 3.1478990357047909043330946587...
p^3*q^2 : b(A143610(n)) = 3.7022736187975437971431347250...
p^5*q : b(A178740(n)) = 3.8016448153137023524550386355...
p^3*q*r : b(A189975(n)) = 4.0600260453688532535920785448...
p^7 : b(A092759(n)) = 3.3935083220984414431597997463...
p^4*q^2 : b(A189988(n)) = 4.1453038440113498808159420150...
p^2*q^2*r: b(A179643(n)) = 4.2413382309993874486053755390...
p^6*q : b(A189987(n)) = 4.1311805192254587026923218218...
p*q*r*s : b(A046386(n)) = 3.8825338629275134572083061357...
...
b(Axxxxxx(1)) in the sequences above, is given by A025487.
(End)
First column in the coefficients of the characteristic polynomials is the Möbius function A008683.
Row sums of coefficients start: 0, -1, 0, 0, 0, 0, 0, 0, 0, ...
Third diagonal is a signed version of A000096.
Most of the eigenvalues are equal to 1. The number of eigenvalues equal to 1 are given by A075795 for n>1.
The first three of the eigenvalues above can be calculated as nested radicals. The fourth eigenvalue 2.205569430400590... minus 1 = 1.205569430400590... is also a nested radical.
EXAMPLE
{
{ 1},
{ 1, -1},
{-1, -1, 1},
{-1, 0, 2, -1},
{ 0, 0, 2, -3, 1},
{-1, 2, 1, -5, 4, -1},
{ 1, -3, 5, -8, 9, -5, 1},
{-1, 4, -4, -5, 15, -14, 6, -1},
{ 0, -1, 6, -17, 29, -31, 20, -7, 1},
{ 0, 0, 2, -13, 36, -55, 50, -27, 8, -1},
{ 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1}
}
MATHEMATICA
Clear[x, AA, nn, s]; Monitor[AA = Flatten[Table[A = Table[Table[If[Mod[n, k] == 0, 1, 0], {k, 1, nn}], {n, 1, nn}]; MatrixForm[A]; a = A[[1, nn]]; A[[1, nn]] = A[[nn, nn]]; A[[nn, nn]] = a; CoefficientList[CharacteristicPolynomial[A, x], x], {nn, 1, 10}]], nn]
KEYWORD
sign,tabl
AUTHOR
Mats Granvik, Jul 24 2016
STATUS
approved
Decimal expansion of the real root of x^3 - 2*x^2 - 1.
+10
1
2, 2, 0, 5, 5, 6, 9, 4, 3, 0, 4, 0, 0, 5, 9, 0, 3, 1, 1, 7, 0, 2, 0, 2, 8, 6, 1, 7, 7, 8, 3, 8, 2, 3, 4, 2, 6, 3, 7, 7, 1, 0, 8, 9, 1, 9, 5, 9, 7, 6, 9, 9, 4, 4, 0, 4, 7, 0, 5, 5, 2, 2, 0, 3, 5, 5, 1, 8, 3, 4, 7, 9, 0, 3, 5, 9, 1, 6, 7, 4, 6, 9, 1, 7, 6, 4, 1, 8
OFFSET
1,1
COMMENTS
This is the minimum number having the property that there are uncountably many permutation classes with the growth rate equal to that number. [Vatter] - Andrey Zabolotskiy, Dec 04 2024
LINKS
Vincent Vatter, Small permutation classes, Proc. London Math. Soc. (3), 103 (2011), 879-921; arXiv:0712.4006 [math.CO], 2007-2016.
Wikipedia, Supersilver ratio.
FORMULA
Equals ((172 + 12*sqrt(177))^(1/3)+16/(172 + 12*sqrt(177))^(1/3) + 4)/6.
Equals ((172 + 12*sqrt(177))^(1/3) + (172 - 12*sqrt(177))^(1/3) + 4)/6.
Equals (((1/2)*(43 + 3*sqrt(3*59)))^(1/3) + ((1/2)*(43 - 3*sqrt(3*59)))^(1/3) + 2)/3.
Equals 2*(1 + 2*cosh(log((43 + 3*sqrt(177))/16)/3))/3. - Vaclav Kotesovec, Aug 19 2022
Equals y + 2/3 where y = 1.538902... is the real root of y^3 - (4/3)*y - 43/27.
Equals 1 + A137421. - R. J. Mathar, Sep 23 2022
Equals 1/A272874. - Hugo Pfoertner, Sep 11 2024
EXAMPLE
2.2055694304005903117020286177838234263771089195976994404705522035518347903...
MATHEMATICA
First[RealDigits[N[Root[#1^3-2#1^2-1 &, 1, 0], 78]]] (* Stefano Spezia, Aug 19 2022 *)
PROG
(PARI) solve(x=2, 3, x^3 - 2*x^2 - 1) \\ Michel Marcus, Aug 19 2022
(PARI) polrootsreal(x^3 - 2*x^2 - 1)[1] \\ Charles R Greathouse IV, Dec 04 2024
CROSSREFS
KEYWORD
nonn,cons,easy,changed
AUTHOR
Wolfdieter Lang, Aug 18 2022
STATUS
approved

Search completed in 0.007 seconds