[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a278428 -id:a278428
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of q^(-1/24) (m (1-m) / 16)^(1/24) in powers of q, where m = k^2 is the parameter and q is the nome for Jacobian elliptic functions.
+10
23
1, -1, 1, -2, 2, -3, 4, -5, 6, -8, 10, -12, 15, -18, 22, -27, 32, -38, 46, -54, 64, -76, 89, -104, 122, -142, 165, -192, 222, -256, 296, -340, 390, -448, 512, -585, 668, -760, 864, -982, 1113, -1260, 1426, -1610, 1816, -2048, 2304, -2590, 2910, -3264, 3658, -4097, 4582, -5120, 5718, -6378
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of partitions of n into distinct parts with an even number of odd parts minus partitions of n into distinct parts with an odd number of odd parts. G.f.: Product_{i=1..oo} (1+(-1)^i*x^i). - Jon Perry, Jun 04 2004
LINKS
Jason Fulman, Random matrix theory over finite fields, Bull. Amer. Math. Soc. (N.S.), 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 2, with k=0. - N. J. A. Sloane, Aug 31 2014
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 14.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
E. W. Weisstein's World of Mathematics, Elliptic Lambda Function
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
FORMULA
Expansion of 1 / chi(x) = chi(-x) / chi(-x^2) = f(x) / phi(x) = f(-x) / phi(-x^2) = psi(-x) / f(-x^2) = f(-x^2) / f(x) = f(-x^4) / psi(x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of (lambda * (1 - lambda) / (16 * q))^(1/24) in powers of q where lambda is a modular elliptic function and q = exp(Pi i z) is the nome. - Michael Somos, Jul 19 2012
Expansion of q^(-1/24) * eta(q) * eta(q^4) / eta(q^2)^2 in powers of q.
Expansion of q^(-1/24) / f(t) in powers of q = exp(Pi i t) where f() is Weber's function.
Euler transform of period 4 sequence [-1, 1, -1, 0, ...].
Given g.f. A(x), B(x) = x * A(x^3)^8 satisfies 0 = f(B(x), B(x^2)) where f(u, v) = (u - v^2) * (v - u^2) - (4 * u * v * (1 - u*v))^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 16 2007
G.f.: Product_{k>0} 1 / ( 1 + x^(2k - 1)) = Product_{k>0} (1 + (-x)^k).
a(n) = (-1)^n * A000009(n). Convolution inverse of A000700.
a(n) ~ (-1)^n * exp(Pi*sqrt(n/3)) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015
G.f.: (1/2)*(-1; -x)_inf, where (a; q)_inf is the q-Pochhammer symbol. - Vladimir Reshetnikov, Nov 21 2016
G.f.: exp(-Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 08 2018
Given g.f. A(x), B(x) = 2^(1/4) * x * A(x^24) satisfies 0 = f(B(x), B(x^5)) where f(u, v) = u^6 + v^6 + 2*u*v * ((u*v)^4 - 1). - Michael Somos, Mar 14 2019
EXAMPLE
G.f. = 1 - x + x^2 - 2*x^3 + 2*x^4 - 3*x^5 + 4*x^6 - 5*x^7 + 6*x^8 - 8*x^9 + ...
G.f. = q - q^25 + q^49 - 2*q^73 + 2*q^97 - 3*q^121 + 4*q^145 - 5*q^169 + ...
MAPLE
read theta; t1:=series(eta, q, 48); t2:= q^(-1/24)*t1*subs(q=q^4, t1)/subs(q=q^2, t1)^2; series(t2, q, 48); seriestolist(%); # N. J. A. Sloane, Aug 24 2007
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ -x, x^2], {x, 0, n}]; (* Michael Somos, Jul 19 2012 *)
a[ n_] := SeriesCoefficient[ 1 / Product[ 1 + x^k, {k, 1, n, 2}], {x, 0, n}]; (* Michael Somos, Jul 19 2012 *)
a[ n_] := SeriesCoefficient[ With[ {m = ModularLambda[ Log[ q] / (Pi I)]}, ( m (1 - m) / (16 q))^(1/24)], {q, 0, n}]; (* Michael Somos, Jul 19 2012 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x, -x], {x, 0, n}]; (* Michael Somos, Nov 22 2016 *)
nmax = 100; CoefficientList[Series[Product[(1 + x^(2*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *)
(QPochhammer[-1, -x]/2 + O[x]^60)[[3]] (* Vladimir Reshetnikov, Nov 21 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) / eta(x^2 + A)^2, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 18 2003
STATUS
approved
Coefficient of x^n in Product_{k>=1} 1/(1+x^k)^n.
+10
13
-1, 1, -4, 17, -56, 172, -547, 1809, -6061, 20316, -68135, 229244, -774372, 2624119, -8912759, 30328593, -103382254, 352975681, -1206921212, 4132159452, -14163858895, 48601267199, -166930975524, 573872089212, -1974472043081, 6798561779868, -23425506369715
OFFSET
1,3
LINKS
FORMULA
a(n) ~ (-1)^n * c * d^n / sqrt(n), where d = A318204 = 3.5097543279497033404372735..., c = 0.23322106096789389697797... .
MATHEMATICA
Table[SeriesCoefficient[Product[1/(1+x^k)^n, {k, 1, n}], {x, 0, n}], {n, 1, 30}]
(* Calculation of constant c: *) 1/Sqrt[(4 - r^2*s^3*Derivative[0, 2][QPochhammer][-1, r*s])*Pi] /. FindRoot[{QPochhammer[-1, r*s] == 2/s, 2/s + r*s*Derivative[0, 1][QPochhammer][-1, r*s] == 0}, {r, -1/3}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 03 2023 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Vaclav Kotesovec, Feb 24 2015
STATUS
approved
G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 - x^k*A(x)^k)^k.
+10
4
1, -1, -1, 4, 1, -17, -6, 118, -8, -876, 625, 5966, -7486, -41937, 75969, 306312, -768637, -2164992, 7487063, 14461466, -70259884, -89410774, 646971980, 459817892, -5861484630, -1128608133, 52082250637, -15894742662, -453574650852, 366848121166, 3866670213663, -5215687717614
OFFSET
0,4
FORMULA
From Peter Bala, Feb 09 2020: (Start)
A(x) = 1/x * series reversion of ( exp( Sum_{n >= 1} sigma_2(n)*x^n/n ) ), where sigma_2(n) = A001157(n).
Equivalently, the o.g.f. A(x) satisfies [x^n](1/A(x))^n = sigma_2(n) for n >= 1. Cf. A066398. (End)
A(x) equals (1/x) * series reversion of (x * the o.g.f. for the sequence of planar partitions A000219). - Peter Bala, Feb 11 2020
EXAMPLE
G.f. A(x) = 1 - x - x^2 + 4*x^3 + x^4 - 17*x^5 - 6*x^6 + 118*x^7 - 8*x^8 - 876*x^9 + 625*x^10 + ...
G.f. A(x) satisfies: A(x) = (1 - x*A(x)) * (1 - x^2*A(x)^2)^2 * (1 - x^3*A(x)^3)^3 * (1 - x^4*A(x)^4)^4 * ...
log(A(x)) = -x - 3*x^2/2 + 8*x^3/3 + 13*x^4/4 - 51*x^5/5 - 120*x^6/6 + 538*x^7/7 + 781*x^8/8 - 5419*x^9/9 - 3053*x^10/10 + ... + A281267(n)*x^n/n + ...
MAPLE
with(numtheory):
Order := 33:
Gser := solve(series(x*exp(add(sigma[2](n)*x^n/n, n = 1..32)), x) = y, x):
seq(coeff(Gser, y^k), k = 1..32); # Peter Bala, Feb 09 2020
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Mar 24 2018
STATUS
approved
Decimal expansion of a constant related to the asymptotics of A255526.
+10
3
3, 5, 0, 9, 7, 5, 4, 3, 2, 7, 9, 4, 9, 7, 0, 3, 3, 4, 0, 4, 3, 7, 2, 7, 3, 5, 2, 3, 3, 7, 5, 1, 9, 3, 6, 9, 8, 4, 5, 4, 7, 8, 9, 7, 3, 3, 9, 3, 1, 7, 3, 9, 9, 1, 1, 7, 8, 9, 8, 9, 9, 3, 7, 8, 5, 8, 5, 4, 8, 2, 1, 7, 0, 1, 5, 1, 2, 0, 0, 7, 7, 4, 4, 5, 6, 4, 8, 9, 4, 0, 8, 1, 3, 0, 7, 5, 1, 2, 1, 3, 2, 6, 4, 0, 2
OFFSET
1,1
EXAMPLE
3.509754327949703340437273523375193698454789733931739911...
MATHEMATICA
RealDigits[1/r /. FindRoot[{2*r == s*QPochhammer[-1, -s], 2*r == s^2*Derivative[0, 1][QPochhammer][-1, -s]}, {r, 1/3}, {s, 1/2}, WorkingPrecision -> 120], 10, 105][[1]] (* Vaclav Kotesovec, Oct 03 2023 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Aug 21 2018
STATUS
approved
G.f. A(x) satisfies: A(x) = Product_{k>=1} ((1 + x^k*A(x)^k)/(1 - x^k*A(x)^k))^k.
+10
1
1, 2, 10, 60, 398, 2820, 20892, 159868, 1253758, 10024070, 81400672, 669532924, 5566386324, 46701736772, 394910202608, 3362210548344, 28797181196766, 247955463799812, 2145088563952510, 18636002388075260, 162523319555310664, 1422259430668179592, 12485554521209720492, 109922263517662775292
OFFSET
0,2
EXAMPLE
G.f. A(x) = 1 + 2*x + 10*x^2 + 60*x^3 + 398*x^4 + 2820*x^5 + 20892*x^6 + 159868*x^7 + 1253758*x^8 + ...
G.f. A(x) satisfies: A(x) = ((1 + x*A(x)) * (1 + x^2*A(x)^2)^2 * (1 + x^3*A(x)^3)^3 * ...)/((1 - x*A(x)) * (1 - x^2*A(x)^2)^2 * (1 - x^3*A(x)^3)^3 * ...).
log(A(x)) = 2*x + 16*x^2/2 + 128*x^3/3 + 1056*x^4/4 + 8952*x^5/5 + 77200*x^6/6 + 673948*x^7/7 + 5937792*x^8/8 + ... + A270924(n)*x^n/n + ...
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 24 2018
STATUS
approved

Search completed in 0.041 seconds