Displaying 1-10 of 11 results found.
1, 1, 1, 2, 2, 5, 4, 9, 10, 20, 18, 32, 45, 58, 82, 101, 148, 178, 274, 306, 452, 512, 785, 872, 1258, 1450, 2061, 2304, 3274, 3796, 5108, 6056, 7954, 9376, 12200, 14733, 18500, 22608, 28004, 34354, 41905, 51752, 62122, 77090, 91764, 114640, 134560, 167690
MATHEMATICA
Abs[(QPochhammer[I, x] + O[x]^60)[[3]]]^2 / 2
G.f.: Re((i; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).
+10
12
1, -1, -1, -2, -2, -3, -2, -3, -2, -2, 0, 0, 3, 4, 8, 9, 14, 16, 22, 24, 30, 32, 39, 40, 46, 46, 51, 48, 52, 46, 46, 36, 32, 16, 8, -15, -30, -60, -82, -122, -151, -200, -238, -296, -342, -412, -464, -542, -602, -686, -750, -841, -904, -996, -1058, -1146, -1198
COMMENTS
The q-Pochhammer symbol (a; q)_inf = Product_{k>=0} (1 - a*q^k).
FORMULA
(i; x)_inf is the g.f. for a(n) + i* A278400(n).
G.f.: Sum_{n >= 0} (-1)^n^x^(n*(2*n-1))/Product_{k = 1..2*n} 1 - x^k. - Peter Bala, Feb 04 2021
MAPLE
G := add((-1)^n*x^(n*(2*n-1))/mul(1 - x^k, k = 1..2*n), n = 0..7):
S := series(G, x, 101):
seq(coeff(S, x, j), j = 0..100); # Peter Bala, Feb 04 2021
MATHEMATICA
Re[(QPochhammer[I, x] + O[x]^60)[[3]]]
G.f.: Im((i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).
+10
10
0, -1, -1, -1, -1, -1, 0, 0, 1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 15, 15, 16, 16, 16, 14, 13, 9, 6, 0, -5, -14, -22, -34, -45, -60, -74, -93, -110, -132, -152, -177, -199, -226, -249, -277, -300, -328, -348, -373, -389, -408, -417, -428, -425, -424, -407, -389, -352
FORMULA
(i*x; x)_inf is the g.f. for A292042(n) + i*a(n).
G.f.: Sum_{n >= 0} (-1)^(n+1)*x^((n+1)*(2*n+1))/Product_{k = 1..2*n+1} (1 - x^k).
The 2 X 2 matrix Product_{k >= 1} [1, -x^k; x^k, 1] = [A(x), B(x); -B(x), A(x)], where A(x) is the g.f. of A292042 and B(x) is the g.f. for this sequence.
A(x)^2 + B(x)^2 = Product_{k >= 1} 1 + x^(2*k) = A000009(x^2).
A(x) + B(x) is the g.f. of A278399; B(x) - A(x) is the g.f. of A278400. (End)
EXAMPLE
Product_{k>=1} (1 - i*x^k) = 1 + (0-1i)*x + (0-1i)*x^2 + (-1-1i)*x^3 + (-1-1i)*x^4 + (-2-1i)*x^5 + (-2+0i)*x^6 + (-3+0i)*x^7 + ...
MAPLE
N:= 100:
S := convert(series( add( (-1)^(n+1)*x^((n+1)*(2*n+1))/(mul(1 - x^k, k = 1..2*n+1)), n = 0..floor(sqrt(N/2)) ), x, N+1 ), polynom):
seq(coeff(S, x, n), n = 0..N); # Peter Bala, Feb 05 2021
MATHEMATICA
Im[CoefficientList[Series[QPochhammer[I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 08 2017 *)
G.f.: Re((i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).
+10
9
1, 0, 0, -1, -1, -2, -2, -3, -3, -4, -3, -4, -3, -3, -1, -1, 2, 3, 7, 9, 14, 16, 23, 26, 33, 37, 45, 48, 57, 60, 68, 70, 77, 76, 82, 78, 80, 72, 70, 55, 48, 26, 11, -19, -42, -84, -116, -169, -213, -278, -333, -413, -479, -572, -651, -757, -846, -965, -1062
FORMULA
( i*x; x)_inf is the g.f. for a(n) + i* A292043(n).
(-i*x; x)_inf is the g.f. for a(n) + i* A292052(n).
G.f.: A(x) = Sum_{n >= 0} (-1)^n*x^(n*(2*n+1))/Product_{k = 1..2*n} (1 - x^k). Cf. A035294.
Conjectural g.f.: A(x) = (1/2)*Sum_{n >= 0} (-x)^(n*(n-1)/2)/Product_{k = 1..n} (1 - x^k). (End)
EXAMPLE
Product_{k>=1} (1 - i*x^k) = 1 + (0-1i)*x + (0-1i)*x^2 + (-1-1i)*x^3 + (-1-1i)*x^4 + (-2-1i)*x^5 + (-2+0i)*x^6 + (-3+0i)*x^7 + ...
MAPLE
N:= 100:
S := convert(series( add( (-1)^n*x^(n*(2*n+1))/(mul(1 - x^k, k = 1..2*n)), n = 0..floor(sqrt(N/2)) ), x, N+1 ), polynom):
seq(coeff(S, x, n), n = 0..N); # Peter Bala, Jan 15 2021
MATHEMATICA
Re[CoefficientList[Series[QPochhammer[I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 08 2017 *)
G.f.: Re(2/(i; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).
+10
5
1, -1, -2, -1, -1, -1, -1, 1, 2, 2, 2, 4, 5, 5, 5, 6, 7, 5, 3, 4, 3, 0, -2, -3, -5, -10, -14, -16, -18, -23, -28, -28, -29, -35, -38, -37, -37, -39, -39, -35, -30, -29, -26, -15, -5, 0, 10, 26, 41, 51, 64, 85, 105, 119, 135, 160, 183, 196, 212, 236, 255, 265
COMMENTS
The q-Pochhammer symbol (a; q)_inf = Product_{k>=0} (1 - a*q^k).
FORMULA
2/(i; x)_inf is the g.f. for a(n) + i* A278402(n).
G.f.: Sum_{n >= 0} (-1)^n*x^(2*n)*(1 - x - x^(2*n+1))/Product_{k = 1..2*n+1} (1 - x^k). - Peter Bala, Feb 08 2021
MAPLE
with(gfun): series( add( (-1)^n*x^(2*n)*(1 - x - x^(2*n+1))/mul(1 - x^k, k = 1..2*n+1), n = 0..50), x, 101): seriestolist(%); # Peter Bala, Feb 08 2021
MATHEMATICA
Re[(2/QPochhammer[I, x] + O[x]^70)[[3]]]
G.f.: Im(2/(i; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).
+10
5
1, 1, 0, -1, -1, -1, -3, -3, -2, -2, -2, -2, -1, 1, 1, 2, 5, 7, 7, 8, 11, 12, 12, 13, 15, 16, 14, 12, 12, 11, 6, 2, 1, -3, -10, -17, -21, -27, -37, -45, -50, -57, -68, -77, -81, -86, -96, -102, -101, -103, -108, -109, -103, -97, -95, -88, -71, -54, -42, -24, 5
COMMENTS
The q-Pochhammer symbol (a; q)_inf = Product_{k>=0} (1 - a*q^k).
FORMULA
2/(i; x)_inf is the g.f. for A278401(n) + i*a(n).
G.f.: Sum_{n >= 0} (-1)^n*x^(2*n)*(1 + x - x^(2*n+1))/Product_{k = 1..2*n+1} (1 - x^k). - Peter Bala, Feb 09 2021
MAPLE
with(gfun): series( add( (-1)^n*x^(2*n)*(1 + x - x^(2*n+1))/mul(1 - x^k, k = 1..2*n+1), n = 0..50), x, 101): seriestolist(%); # Peter Bala, Feb 09 2021
MATHEMATICA
Im[(2/QPochhammer[I, x] + O[x]^70)[[3]]]
G.f.: Im((-i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).
+10
4
0, 1, 1, 1, 1, 1, 0, 0, -1, -2, -3, -4, -6, -7, -9, -10, -12, -13, -15, -15, -16, -16, -16, -14, -13, -9, -6, 0, 5, 14, 22, 34, 45, 60, 74, 93, 110, 132, 152, 177, 199, 226, 249, 277, 300, 328, 348, 373, 389, 408, 417, 428, 425, 424, 407, 389, 352, 314, 252
FORMULA
(-i*x; x)_inf is the g.f. for A292042(n) + i*a(n).
EXAMPLE
Product_{k>=1} (1 + i*x^k) = 1 + (0+1i)*x + (0+1i)*x^2 + (-1+1i)*x^3 + (-1+1i)*x^4 + (-2+1i)*x^5 + (-2+0i)*x^6 + (-3+0i)*x^7 + ...
MAPLE
N:= 100: # to get a(0)..a(N)
P:= mul(1+I*x^k, k=1..N):
S:= series(P, x, N+1):
seq(evalc(Im(coeff(S, x, j))), j=0..N); # Robert Israel, Sep 08 2017
MATHEMATICA
Im[CoefficientList[Series[QPochhammer[-I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 09 2017 *)
G.f.: Im((2*i; x)_oo), where (a; q)_oo is the q-Pochhammer symbol, i = sqrt(-1).
+10
4
-2, -2, -2, 6, 6, 14, 22, 30, 38, 54, 30, 46, 30, 14, -34, -74, -154, -226, -362, -498, -698, -762, -1058, -1218, -1474, -1634, -1890, -1914, -2074, -2002, -1962, -1570, -1210, -266, 606, 2190, 3454, 6030, 8382, 11926, 15334, 20190, 24758, 30990, 36678, 44134
FORMULA
(2*i; x)_oo is the g.f. for A292135(n) + i*a(n).
Triangle read by rows: T(n,k) = (-1)^(k-1) * T(n-k,k-1) + T(n-k,k) with T(0,0) = 1 for 0 <= k <= A003056(n).
+10
3
1, 0, 1, 0, 1, 0, 1, -1, 0, 1, -1, 0, 1, -2, 0, 1, -2, -1, 0, 1, -3, -1, 0, 1, -3, -2, 0, 1, -4, -3, 0, 1, -4, -4, 1, 0, 1, -5, -5, 1, 0, 1, -5, -7, 2, 0, 1, -6, -8, 3, 0, 1, -6, -10, 5, 0, 1, -7, -12, 6, 1, 0, 1, -7, -14, 9, 1, 0, 1, -8, -16, 11, 2, 0, 1, -8, -19
EXAMPLE
First few rows are:
1;
0, 1;
0, 1;
0, 1, -1;
0, 1, -1;
0, 1, -2;
0, 1, -2, -1;
0, 1, -3, -1;
0, 1, -3, -2;
0, 1, -4, -3;
0, 1, -4, -4, 1.
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Im((k*i; x)_inf), and (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).
+10
3
0, -1, 0, -2, -1, 0, -3, -2, -1, 0, -4, -3, -2, 0, 0, -5, -4, -3, 6, 0, 0, -6, -5, -4, 24, 6, 1, 0, -7, -6, -5, 60, 24, 14, 2, 0, -8, -7, -6, 120, 60, 51, 22, 3, 0, -9, -8, -7, 210, 120, 124, 78, 30, 4, 0, -10, -9, -8, 336, 210, 245, 188, 105, 38, 6, 0, -11, -10
EXAMPLE
Square array begins:
0, -1, -2, -3, -4, ...
0, -1, -2, -3, -4, ...
0, -1, -2, -3, -4, ...
0, 0, 6, 24, 60, ...
0, 0, 6, 24, 60, ...
Search completed in 0.008 seconds
|