[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a278400 -id:a278400
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = (A278399(n)^2 + A278400(n)^2)/2.
+20
7
1, 1, 1, 2, 2, 5, 4, 9, 10, 20, 18, 32, 45, 58, 82, 101, 148, 178, 274, 306, 452, 512, 785, 872, 1258, 1450, 2061, 2304, 3274, 3796, 5108, 6056, 7954, 9376, 12200, 14733, 18500, 22608, 28004, 34354, 41905, 51752, 62122, 77090, 91764, 114640, 134560, 167690
OFFSET
0,4
LINKS
FORMULA
a(n) = A292042(n)^2 + A292043(n)^2. - Vaclav Kotesovec, Sep 08 2017
MATHEMATICA
Abs[(QPochhammer[I, x] + O[x]^60)[[3]]]^2 / 2
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
G.f.: Re((i; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).
+10
12
1, -1, -1, -2, -2, -3, -2, -3, -2, -2, 0, 0, 3, 4, 8, 9, 14, 16, 22, 24, 30, 32, 39, 40, 46, 46, 51, 48, 52, 46, 46, 36, 32, 16, 8, -15, -30, -60, -82, -122, -151, -200, -238, -296, -342, -412, -464, -542, -602, -686, -750, -841, -904, -996, -1058, -1146, -1198
OFFSET
0,4
COMMENTS
The q-Pochhammer symbol (a; q)_inf = Product_{k>=0} (1 - a*q^k).
LINKS
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
FORMULA
(i; x)_inf is the g.f. for a(n) + i*A278400(n).
G.f.: Sum_{n >= 0} (-1)^n^x^(n*(2*n-1))/Product_{k = 1..2*n} 1 - x^k. - Peter Bala, Feb 04 2021
MAPLE
G := add((-1)^n*x^(n*(2*n-1))/mul(1 - x^k, k = 1..2*n), n = 0..7):
S := series(G, x, 101):
seq(coeff(S, x, j), j = 0..100); # Peter Bala, Feb 04 2021
MATHEMATICA
Re[(QPochhammer[I, x] + O[x]^60)[[3]]]
KEYWORD
sign,easy
AUTHOR
STATUS
approved
G.f.: Im((i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).
+10
10
0, -1, -1, -1, -1, -1, 0, 0, 1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 15, 15, 16, 16, 16, 14, 13, 9, 6, 0, -5, -14, -22, -34, -45, -60, -74, -93, -110, -132, -152, -177, -199, -226, -249, -277, -300, -328, -348, -373, -389, -408, -417, -428, -425, -424, -407, -389, -352
OFFSET
0,10
LINKS
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
FORMULA
(i*x; x)_inf is the g.f. for A292042(n) + i*a(n).
A292042(n)^2 + a(n)^2 = A278420(n). - Vaclav Kotesovec, Sep 08 2017
From Peter Bala, Feb 05 2021: (Start)
G.f.: Sum_{n >= 0} (-1)^(n+1)*x^((n+1)*(2*n+1))/Product_{k = 1..2*n+1} (1 - x^k).
The 2 X 2 matrix Product_{k >= 1} [1, -x^k; x^k, 1] = [A(x), B(x); -B(x), A(x)], where A(x) is the g.f. of A292042 and B(x) is the g.f. for this sequence.
A(x)^2 + B(x)^2 = Product_{k >= 1} 1 + x^(2*k) = A000009(x^2).
A(x) + B(x) is the g.f. of A278399; B(x) - A(x) is the g.f. of A278400. (End)
EXAMPLE
Product_{k>=1} (1 - i*x^k) = 1 + (0-1i)*x + (0-1i)*x^2 + (-1-1i)*x^3 + (-1-1i)*x^4 + (-2-1i)*x^5 + (-2+0i)*x^6 + (-3+0i)*x^7 + ...
MAPLE
N:= 100:
S := convert(series( add( (-1)^(n+1)*x^((n+1)*(2*n+1))/(mul(1 - x^k, k = 1..2*n+1)), n = 0..floor(sqrt(N/2)) ), x, N+1 ), polynom):
seq(coeff(S, x, n), n = 0..N); # Peter Bala, Feb 05 2021
MATHEMATICA
Im[CoefficientList[Series[QPochhammer[I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 08 2017 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 08 2017
STATUS
approved
G.f.: Re((i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).
+10
9
1, 0, 0, -1, -1, -2, -2, -3, -3, -4, -3, -4, -3, -3, -1, -1, 2, 3, 7, 9, 14, 16, 23, 26, 33, 37, 45, 48, 57, 60, 68, 70, 77, 76, 82, 78, 80, 72, 70, 55, 48, 26, 11, -19, -42, -84, -116, -169, -213, -278, -333, -413, -479, -572, -651, -757, -846, -965, -1062
OFFSET
0,6
LINKS
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
FORMULA
( i*x; x)_inf is the g.f. for a(n) + i*A292043(n).
(-i*x; x)_inf is the g.f. for a(n) + i*A292052(n).
a(n)^2 + A292043(n)^2 = A278420(n). - Vaclav Kotesovec, Sep 08 2017
From Peter Bala, Jan 15 2021: (Start)
G.f.: A(x) = Sum_{n >= 0} (-1)^n*x^(n*(2*n+1))/Product_{k = 1..2*n} (1 - x^k). Cf. A035294.
Conjectural g.f.: A(x) = (1/2)*Sum_{n >= 0} (-x)^(n*(n-1)/2)/Product_{k = 1..n} (1 - x^k). (End)
EXAMPLE
Product_{k>=1} (1 - i*x^k) = 1 + (0-1i)*x + (0-1i)*x^2 + (-1-1i)*x^3 + (-1-1i)*x^4 + (-2-1i)*x^5 + (-2+0i)*x^6 + (-3+0i)*x^7 + ...
MAPLE
N:= 100:
S := convert(series( add( (-1)^n*x^(n*(2*n+1))/(mul(1 - x^k, k = 1..2*n)), n = 0..floor(sqrt(N/2)) ), x, N+1 ), polynom):
seq(coeff(S, x, n), n = 0..N); # Peter Bala, Jan 15 2021
MATHEMATICA
Re[CoefficientList[Series[QPochhammer[I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 08 2017 *)
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 08 2017
STATUS
approved
G.f.: Re(2/(i; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).
+10
5
1, -1, -2, -1, -1, -1, -1, 1, 2, 2, 2, 4, 5, 5, 5, 6, 7, 5, 3, 4, 3, 0, -2, -3, -5, -10, -14, -16, -18, -23, -28, -28, -29, -35, -38, -37, -37, -39, -39, -35, -30, -29, -26, -15, -5, 0, 10, 26, 41, 51, 64, 85, 105, 119, 135, 160, 183, 196, 212, 236, 255, 265
OFFSET
0,3
COMMENTS
The q-Pochhammer symbol (a; q)_inf = Product_{k>=0} (1 - a*q^k).
LINKS
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
FORMULA
2/(i; x)_inf is the g.f. for a(n) + i*A278402(n).
G.f.: Sum_{n >= 0} (-1)^n*x^(2*n)*(1 - x - x^(2*n+1))/Product_{k = 1..2*n+1} (1 - x^k). - Peter Bala, Feb 08 2021
MAPLE
with(gfun): series( add( (-1)^n*x^(2*n)*(1 - x - x^(2*n+1))/mul(1 - x^k, k = 1..2*n+1), n = 0..50), x, 101): seriestolist(%); # Peter Bala, Feb 08 2021
MATHEMATICA
Re[(2/QPochhammer[I, x] + O[x]^70)[[3]]]
CROSSREFS
KEYWORD
sign,easy
AUTHOR
STATUS
approved
G.f.: Im(2/(i; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).
+10
5
1, 1, 0, -1, -1, -1, -3, -3, -2, -2, -2, -2, -1, 1, 1, 2, 5, 7, 7, 8, 11, 12, 12, 13, 15, 16, 14, 12, 12, 11, 6, 2, 1, -3, -10, -17, -21, -27, -37, -45, -50, -57, -68, -77, -81, -86, -96, -102, -101, -103, -108, -109, -103, -97, -95, -88, -71, -54, -42, -24, 5
OFFSET
0,7
COMMENTS
The q-Pochhammer symbol (a; q)_inf = Product_{k>=0} (1 - a*q^k).
LINKS
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
FORMULA
2/(i; x)_inf is the g.f. for A278401(n) + i*a(n).
G.f.: Sum_{n >= 0} (-1)^n*x^(2*n)*(1 + x - x^(2*n+1))/Product_{k = 1..2*n+1} (1 - x^k). - Peter Bala, Feb 09 2021
MAPLE
with(gfun): series( add( (-1)^n*x^(2*n)*(1 + x - x^(2*n+1))/mul(1 - x^k, k = 1..2*n+1), n = 0..50), x, 101): seriestolist(%); # Peter Bala, Feb 09 2021
MATHEMATICA
Im[(2/QPochhammer[I, x] + O[x]^70)[[3]]]
CROSSREFS
KEYWORD
sign
AUTHOR
STATUS
approved
G.f.: Im((-i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).
+10
4
0, 1, 1, 1, 1, 1, 0, 0, -1, -2, -3, -4, -6, -7, -9, -10, -12, -13, -15, -15, -16, -16, -16, -14, -13, -9, -6, 0, 5, 14, 22, 34, 45, 60, 74, 93, 110, 132, 152, 177, 199, 226, 249, 277, 300, 328, 348, 373, 389, 408, 417, 428, 425, 424, 407, 389, 352, 314, 252
OFFSET
0,10
LINKS
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
FORMULA
(-i*x; x)_inf is the g.f. for A292042(n) + i*a(n).
a(n) = -A292043(n).
EXAMPLE
Product_{k>=1} (1 + i*x^k) = 1 + (0+1i)*x + (0+1i)*x^2 + (-1+1i)*x^3 + (-1+1i)*x^4 + (-2+1i)*x^5 + (-2+0i)*x^6 + (-3+0i)*x^7 + ...
MAPLE
N:= 100: # to get a(0)..a(N)
P:= mul(1+I*x^k, k=1..N):
S:= series(P, x, N+1):
seq(evalc(Im(coeff(S, x, j))), j=0..N); # Robert Israel, Sep 08 2017
MATHEMATICA
Im[CoefficientList[Series[QPochhammer[-I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 09 2017 *)
CROSSREFS
KEYWORD
sign,look
AUTHOR
Seiichi Manyama, Sep 08 2017
STATUS
approved
G.f.: Im((2*i; x)_oo), where (a; q)_oo is the q-Pochhammer symbol, i = sqrt(-1).
+10
4
-2, -2, -2, 6, 6, 14, 22, 30, 38, 54, 30, 46, 30, 14, -34, -74, -154, -226, -362, -498, -698, -762, -1058, -1218, -1474, -1634, -1890, -1914, -2074, -2002, -1962, -1570, -1210, -266, 606, 2190, 3454, 6030, 8382, 11926, 15334, 20190, 24758, 30990, 36678, 44134
OFFSET
0,1
LINKS
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
FORMULA
(2*i; x)_oo is the g.f. for A292135(n) + i*a(n).
CROSSREFS
Column k=2 of A292160.
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 09 2017
STATUS
approved
Triangle read by rows: T(n,k) = (-1)^(k-1) * T(n-k,k-1) + T(n-k,k) with T(0,0) = 1 for 0 <= k <= A003056(n).
+10
3
1, 0, 1, 0, 1, 0, 1, -1, 0, 1, -1, 0, 1, -2, 0, 1, -2, -1, 0, 1, -3, -1, 0, 1, -3, -2, 0, 1, -4, -3, 0, 1, -4, -4, 1, 0, 1, -5, -5, 1, 0, 1, -5, -7, 2, 0, 1, -6, -8, 3, 0, 1, -6, -10, 5, 0, 1, -7, -12, 6, 1, 0, 1, -7, -14, 9, 1, 0, 1, -8, -16, 11, 2, 0, 1, -8, -19
OFFSET
0,14
LINKS
EXAMPLE
First few rows are:
1;
0, 1;
0, 1;
0, 1, -1;
0, 1, -1;
0, 1, -2;
0, 1, -2, -1;
0, 1, -3, -1;
0, 1, -3, -2;
0, 1, -4, -3;
0, 1, -4, -4, 1.
CROSSREFS
Row sums give (-1)*A278400.
Columns 0-1 give A000007, A000012.
Cf. A292047.
KEYWORD
sign,tabf,look
AUTHOR
Seiichi Manyama, Sep 08 2017
STATUS
approved
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Im((k*i; x)_inf), and (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).
+10
3
0, -1, 0, -2, -1, 0, -3, -2, -1, 0, -4, -3, -2, 0, 0, -5, -4, -3, 6, 0, 0, -6, -5, -4, 24, 6, 1, 0, -7, -6, -5, 60, 24, 14, 2, 0, -8, -7, -6, 120, 60, 51, 22, 3, 0, -9, -8, -7, 210, 120, 124, 78, 30, 4, 0, -10, -9, -8, 336, 210, 245, 188, 105, 38, 6, 0, -11, -10
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
EXAMPLE
Square array begins:
0, -1, -2, -3, -4, ...
0, -1, -2, -3, -4, ...
0, -1, -2, -3, -4, ...
0, 0, 6, 24, 60, ...
0, 0, 6, 24, 60, ...
CROSSREFS
Columns k=0..2 give A000004, A278400, A292140.
Rows 0+2 give (-1)*A001477.
Main diagonal gives A292162.
Cf. A292159.
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Sep 10 2017
STATUS
approved

Search completed in 0.008 seconds