[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a276903 -id:a276903
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of positive walks with n steps {-3,-2,-1,1,2,3} starting at the origin, ending at altitude 1, and staying strictly above the x-axis.
+10
15
0, 1, 2, 7, 28, 121, 560, 2677, 13230, 66742, 343092, 1788681, 9439870, 50321865, 270594896, 1465941763, 7993664588, 43839212778, 241650560756, 1338084935826, 7439615051328, 41516113036777, 232452845782308, 1305500166481715, 7352433083806020, 41514430735834714
OFFSET
0,3
LINKS
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
MATHEMATICA
walks[n_, k_, h_] = 0;
walks[1, k_, h_] := Boole[0 < k <= h];
walks[n_, k_, h_] /; n >= 2 && k > 0 := walks[n, k, h] = Sum[walks[n - 1, k - x, h], {x, h}] + Sum[walks[n - 1, k + x, h], {x, h}];
(* walks represents the number of positive walks with n steps {-h, -h+1, ... -1, 1, ..., h} that end at altitude k *)
A276852[n_] := (Do[walks[m, k, 3], {m, n}, {k, 3 m}]; walks[n, 1, 3]) (* Davin Park, Oct 10 2016 *)
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Michael Wallner, Sep 21 2016
STATUS
approved
Number of positive walks with n steps {-3,-2,-1,1,2,3} starting at the origin, ending at altitude 2, and staying strictly above the x-axis.
+10
10
0, 1, 2, 9, 34, 159, 730, 3579, 17762, 90538, 467796, 2452727, 12997554, 69549847, 375159290, 2038068813, 11140256754, 61227097438, 338140106124, 1875581756078, 10444142352812, 58364192607047, 327203347219250, 1839778650617309, 10372512509521074
OFFSET
0,3
LINKS
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
MATHEMATICA
walks[n_, k_, h_] = 0;
walks[1, k_, h_] := Boole[0 < k <= h];
walks[n_, k_, h_] /; n >= 2 && k > 0 := walks[n, k, h] = Sum[walks[n - 1, k - x, h], {x, h}] + Sum[walks[n - 1, k + x, h], {x, h}];
(* walks represents the number of positive walks with n steps {-h, -h+1, ... -1, 1, ..., h} that end at altitude k *)
A276901[n_] := (Do[walks[m, k, 3], {m, n}, {k, 3 m}]; walks[n, 2, 3]) (* Davin Park, Oct 10 2016 *)
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Michael Wallner, Sep 21 2016
STATUS
approved
Number of positive walks with n steps {-3,-2,-1,0,1,2,3} starting at the origin, ending at altitude 1, and staying strictly above the x-axis.
+10
10
0, 1, 3, 12, 56, 284, 1526, 8530, 49106, 289149, 1733347, 10542987, 64904203, 403632551, 2531971729, 16002136283, 101795589297, 651286316903, 4188174878517, 27055199929042, 175488689467350, 1142479579205721, 7462785088260791, 48896570201100002
OFFSET
0,3
LINKS
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
MATHEMATICA
walks[n_, k_, h_] = 0;
walks[1, k_, h_] := Boole[0 < k <= h];
walks[n_, k_, h_] /; n >= 2 && k > 0 := walks[n, k, h] = Sum[walks[n - 1, k + x, h], {x, -h, h}];
(* walks represents the number of positive walks with n steps {-h, -h+1, ... , h} that end at altitude k *)
A276902[n_] := (Do[walks[m, k, 3], {m, n}, {k, 3 m}]; walks[n, 1, 3]) (* Davin Park, Oct 10 2016 *)
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Michael Wallner, Sep 21 2016
STATUS
approved
Number of positive walks with n steps {-3,-2,-1,0,1,2,3} starting at the origin, ending at altitude 2, and staying strictly above the x-axis.
+10
9
0, 1, 3, 14, 68, 358, 1966, 11172, 65104, 387029, 2337919, 14309783, 88555917, 553171371, 3483277785, 22087378303, 140913963221, 903876307075, 5825742149049, 37710582868464, 245052827645474, 1598017940728401, 10454217006683855, 68591382498826168
OFFSET
0,3
LINKS
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
MATHEMATICA
walks[n_, k_, h_] = 0;
walks[1, k_, h_] := Boole[0 < k <= h];
walks[n_, k_, h_] /; n >= 2 && k > 0 := walks[n, k, h] = Sum[walks[n - 1, k + x, h], {x, -h, h}];
(* walks represents the number of positive walks with n steps {-h, -h+1, ... , h} that end at altitude k *)
A276904[n_] := (Do[walks[m, k, 3], {m, n}, {k, 3 m}]; walks[n, 2, 3]) (* Davin Park, Oct 10 2016 *)
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Michael Wallner, Sep 21 2016
EXTENSIONS
More terms from Alois P. Heinz, Oct 10 2016
STATUS
approved
Number of positive meanders (walks starting at the origin and ending at any altitude > 0 that never touch or go below the x-axis in between) with n steps from {-2,-1,0,1,2}.
+10
7
1, 2, 7, 29, 126, 565, 2583, 11971, 56038, 264345, 1254579, 5983628, 28655047, 137697549, 663621741, 3206344672, 15525816066, 75324830665, 366071485943, 1781794374016, 8684511754535, 42381025041490, 207055067487165, 1012617403658500, 4956924278927910
OFFSET
0,2
COMMENTS
By convention, the empty walk (corresponding to n=0) is considered to be a positive meander.
LINKS
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
MATHEMATICA
frac[ex_] := Select[ex, Exponent[#, x] < 0&];
seq[n_] := Module[{v, m, p}, v = Table[0, n]; m = Sum[x^i, {i, -2, 2}]; p = 1/x; v[[1]] = 1; For[i = 2, i <= n, i++, p = p*m // Expand; p = p - frac[p]; v[[i]] = p /. x -> 1]; v];
seq[25] (* Jean-François Alcover, Jun 30 2018, after Andrew Howroyd *)
PROG
(PARI) seq(n)={my(v=vector(n), m=sum(i=-2, 2, x^i), p=1/x); v[1]=1; for(i=2, n, p*=m; p-=frac(p); v[i]=subst(p, x, 1)); v} \\ Andrew Howroyd, Jun 27 2018
KEYWORD
nonn,walk
AUTHOR
David Nguyen, Nov 20 2016
STATUS
approved
Number of positive walks with n steps {-4,-3,-2,-1,0,1,2,3,4} starting at the origin, ending at altitude 1, and staying strictly above the x-axis.
+10
1
0, 1, 4, 20, 120, 780, 5382, 38638, 285762, 2162033, 16655167, 130193037, 1030117023, 8234025705, 66391916397, 539360587341, 4410492096741, 36274113675369, 299864297741292, 2490192142719336, 20764402240048267, 173784940354460219, 1459360304511145146
OFFSET
0,3
LINKS
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
MAPLE
b:= proc(n, y) option remember; `if`(n=0, `if`(y=1, 1, 0),
add((h-> `if`(h<1, 0, b(n-1, h)))(y+d), d=-4..4))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..23); # Alois P. Heinz, Nov 12 2016
MATHEMATICA
b[n_, y_] := b[n, y] = If[n == 0, If[y == 1, 1, 0], Sum[Function[h, If[h < 1, 0, b[n - 1, h]]][y + d], {d, -4, 4}]];
a[n_] := b[n, 0];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 03 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
David Nguyen, Nov 04 2016
STATUS
approved
Number of positive walks with n steps {-4,-3,-2,-1,0,1,2,3,4} starting at the origin, ending at altitude 2, and staying strictly above the x-axis.
+10
1
0, 1, 4, 23, 142, 950, 6662, 48420, 361378, 2753687, 21334313, 167551836, 1330894754, 10673486660, 86306300366, 702872359332, 5759986152740, 47463395965108, 393027545388119, 3268814565684836, 27294209365111429, 228718165320327356, 1922825557218427271
OFFSET
0,3
LINKS
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
David Nguyen, Nov 04 2016
STATUS
approved
Number of positive walks with n steps {-4,-3,-2,-1,1,2,3,4} starting at the origin, ending at altitude 1, and staying strictly above the x-axis.
+10
1
0, 1, 3, 13, 71, 405, 2501, 15923, 104825, 704818, 4827957, 33549389, 235990887, 1676907903, 12019875907, 86804930199, 630999932585, 4613307289260, 33900874009698, 250257489686870, 1854982039556397, 13800559463237465, 103017222722691145, 771348369563479705
OFFSET
0,3
LINKS
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
MAPLE
b:= proc(n, y) option remember; `if`(n=0, `if`(y=1, 1, 0), add
((h-> `if`(h<1, 0, b(n-1, h)))(y+d), d=[$-4..-1, $1..4]))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..23); # Alois P. Heinz, Nov 12 2016
MATHEMATICA
b[n_, y_] := b[n, y] = If[n == 0, If[y == 1, 1, 0], Sum[Function[h, If[h < 1, 0, b[n - 1, h]]][y + d], {d, Join[Range[-4, -1], Range[4]]}]];
a[n_] := b[n, 0];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 03 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
David Nguyen, Nov 04 2016
STATUS
approved
Number of positive walks with n steps {-4,-3,-2,-1,1,2,3,4} starting at the origin, ending at altitude 2, and staying strictly above the x-axis.
+10
1
0, 1, 3, 16, 84, 505, 3121, 20180, 133604, 904512, 6224305, 43432093, 306524670, 2184389874, 15695947669, 113595885023, 827299204132, 6058526521135, 44586954104578, 329579179316696, 2445858862779018, 18216235711289695, 136113075865844577, 1020074492384232296
OFFSET
0,3
LINKS
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
David Nguyen, Nov 04 2016
STATUS
approved

Search completed in 0.009 seconds