[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a276898 -id:a276898
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number A(n,k) of ordered set partitions of [n] such that for each block b the smallest integer interval containing b has at most k elements; square array A(n,k), n>=0, k>=0, read by antidiagonals.
+10
12
1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 6, 0, 1, 1, 3, 10, 24, 0, 1, 1, 3, 13, 44, 120, 0, 1, 1, 3, 13, 62, 234, 720, 0, 1, 1, 3, 13, 75, 352, 1470, 5040, 0, 1, 1, 3, 13, 75, 466, 2348, 10656, 40320, 0, 1, 1, 3, 13, 75, 541, 3272, 17880, 87624, 362880, 0
OFFSET
0,9
COMMENTS
Column k > 0 is asymptotic to exp(k-1) * n!. - Vaclav Kotesovec, Sep 22 2016
LINKS
FORMULA
A(n,k) = Sum_{j=0..k} A276891(n,j).
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 3, 3, 3, 3, 3, 3, ...
0, 6, 10, 13, 13, 13, 13, 13, ...
0, 24, 44, 62, 75, 75, 75, 75, ...
0, 120, 234, 352, 466, 541, 541, 541, ...
0, 720, 1470, 2348, 3272, 4142, 4683, 4683, ...
0, 5040, 10656, 17880, 26032, 34792, 42610, 47293, ...
MAPLE
b:= proc(n, m, l) option remember; `if`(n=0, m!,
add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
`if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
end:
A:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0),
`if`(k=1, n!, b(n, 0, [0$(k-1)]))):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
b[n_, m_, l_List] := b[n, m, l] = If[n == 0, m!, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1] ~Complement~ {0}}]]; A[n_, k_] := If[k==0, If[n==0, 1, 0], If[k==1, n!, b[n, 0, Array[0&, k-1]]]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)
CROSSREFS
Main diagonal gives: A000670.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 21 2016
STATUS
approved
Number of set partitions of [n] such that for each block b the smallest integer interval containing b has at most eight elements.
+10
6
1, 1, 2, 5, 15, 52, 203, 877, 4140, 17007, 64077, 231180, 821132, 2918753, 10483154, 38264066, 142423894, 533308705, 1995314365, 7437442700, 27604521795, 102095937121, 376790770192, 1389739254904, 5130664114644, 18964932885093, 70170215134155, 259770146382666
OFFSET
0,3
LINKS
Alois P. Heinz, G.f. for A276724
Pierpaolo Natalini, Paolo Emilio Ricci, New Bell-Sheffer Polynomial Sets, Axioms 2018, 7(4), 71.
FORMULA
G.f.: see link above.
CROSSREFS
Column k=8 of A276719.
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Sep 16 2016
STATUS
approved

Search completed in 0.005 seconds