[go: up one dir, main page]

login
Search: a276617 -id:a276617
     Sort: relevance | references | number | modified | created      Format: long | short | data
Square array A(row,col): A(row,1) = A273670(row-1), and for col > 1, A(row,col) = A153880(A(row,col-1)); Dispersion of factorial base left shift A153880.
+10
20
1, 2, 3, 6, 8, 4, 24, 30, 12, 5, 120, 144, 48, 14, 7, 720, 840, 240, 54, 26, 9, 5040, 5760, 1440, 264, 126, 32, 10, 40320, 45360, 10080, 1560, 744, 150, 36, 11, 362880, 403200, 80640, 10800, 5160, 864, 168, 38, 13, 3628800, 3991680, 725760, 85680, 41040, 5880, 960, 174, 50, 15, 39916800, 43545600, 7257600, 766080, 367920, 46080, 6480, 984, 246, 56, 16
OFFSET
1,2
COMMENTS
The square array A(row,col) is read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
When viewed in factorial base (A007623) the terms on each row start all with the same prefix, but with an increasing number of zeros appended to the end. For example, for row 8 (A001344 from a(1)=11 onward), the terms written in factorial base look as: 121, 1210, 12100, 121000, ...
FORMULA
A(row,1) = A273670(row-1), and for col > 1, A(row,col) = A153880(A(row,col-1))
As a composition of other permutations:
a(n) = A275848(A257505(n)).
EXAMPLE
The top left {1..9} x {1..18} corner of the array:
1, 2, 6, 24, 120, 720, 5040, 40320, 362880
3, 8, 30, 144, 840, 5760, 45360, 403200, 3991680
4, 12, 48, 240, 1440, 10080, 80640, 725760, 7257600
5, 14, 54, 264, 1560, 10800, 85680, 766080, 7620480
7, 26, 126, 744, 5160, 41040, 367920, 3669120, 40279680
9, 32, 150, 864, 5880, 46080, 408240, 4032000, 43908480
10, 36, 168, 960, 6480, 50400, 443520, 4354560, 47174400
11, 38, 174, 984, 6600, 51120, 448560, 4394880, 47537280
13, 50, 246, 1464, 10200, 81360, 730800, 7297920, 80196480
15, 56, 270, 1584, 10920, 86400, 771120, 7660800, 83825280
16, 60, 288, 1680, 11520, 90720, 806400, 7983360, 87091200
17, 62, 294, 1704, 11640, 91440, 811440, 8023680, 87454080
18, 72, 360, 2160, 15120, 120960, 1088640, 10886400, 119750400
19, 74, 366, 2184, 15240, 121680, 1093680, 10926720, 120113280
20, 78, 384, 2280, 15840, 126000, 1128960, 11249280, 123379200
21, 80, 390, 2304, 15960, 126720, 1134000, 11289600, 123742080
22, 84, 408, 2400, 16560, 131040, 1169280, 11612160, 127008000
23, 86, 414, 2424, 16680, 131760, 1174320, 11652480, 127370880
PROG
(Scheme)
(define (A276955 n) (A276955bi (A002260 n) (A004736 n)))
(define (A276955bi row col) (if (= 1 col) (A273670 (- row 1)) (A153880 (A276955bi row (- col 1)))))
CROSSREFS
Inverse permutation: A276956.
Transpose: A276953.
Cf. A276949 (index of column where n appears), A276951 (index of row).
Cf. A153880.
Columns 1-3: A273670, A276932, A276933.
The following lists some of the rows that have their own entries. Pattern present in the factorial base expansion of the terms on that row is given in double quotes:
Row 1: A000142 (from a(1)=1, "1" onward),
Row 2: A001048 (from a(2)=3, "11" onward),
Row 3: A052849 (from a(2)=4, "20" onward).
Row 4: A052649 (from a(1)=5, "21" onward).
Row 5: A108217 (from a(3)=7, "101" onward).
Row 6: A054119 (from a(3)=9, "111" onward).
Row 7: A052572 (from a(2)=10, "120" onward).
Row 8: A001344 (from a(1)=11, "121" onward).
Row 13: A052560 (from a(3)=18, "300" onward).
Row 16: A225658 (from a(1)=21, "311" onward).
Row 20: A276940 (from a(3) = 27, "1011" onward).
Related or similar permutations: A257505, A275848, A273666.
Cf. also arrays A276617, A276588 & A276945.
KEYWORD
nonn,base,tabl
AUTHOR
Antti Karttunen, Sep 22 2016
STATUS
approved
Square array A(n,k) = A276945(n,k)/A002110(k-1), read by descending antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
+10
9
1, 1, 3, 1, 4, 4, 1, 6, 6, 5, 1, 8, 10, 7, 7, 1, 12, 14, 11, 16, 9, 1, 14, 22, 15, 36, 19, 10, 1, 18, 26, 23, 78, 41, 21, 11, 1, 20, 34, 27, 144, 85, 45, 22, 13, 1, 24, 38, 35, 222, 155, 91, 46, 31, 15, 1, 30, 46, 39, 324, 235, 165, 92, 71, 34, 16, 1, 32, 58, 47, 438, 341, 247, 166, 155, 76, 36, 17, 1, 38, 62, 59, 668, 457, 357, 248, 287, 162, 80, 37, 18
OFFSET
1,3
FORMULA
A(n,k) = A276945(n, k) / A002110(k-1).
EXAMPLE
The top left 12 X 12 corner of the array:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38
4, 6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74
5, 7, 11, 15, 23, 27, 35, 39, 47, 59, 63, 75
7, 16, 36, 78, 144, 222, 324, 438, 668, 900, 1148, 1518
9, 19, 41, 85, 155, 235, 341, 457, 691, 929, 1179, 1555
10, 21, 45, 91, 165, 247, 357, 475, 713, 957, 1209, 1591
11, 22, 46, 92, 166, 248, 358, 476, 714, 958, 1210, 1592
13, 31, 71, 155, 287, 443, 647, 875, 1335, 1799, 2295, 3035
15, 34, 76, 162, 298, 456, 664, 894, 1358, 1828, 2326, 3072
16, 36, 80, 168, 308, 468, 680, 912, 1380, 1856, 2356, 3108
17, 37, 81, 169, 309, 469, 681, 913, 1381, 1857, 2357, 3109
PROG
(Scheme)
(define (A286625 n) (A286625bi (A002260 n) (A004736 n)))
(define (A286625bi row col) (/ (A276945bi row col) (A002110 (- col 1))))
CROSSREFS
Transpose: A286623.
Column 1: A276155.
Row 1: A000012, Row 2: A008864, Row 3: A100484, Row 4: A072055, Row 5: A023523 (from its second term onward), Row 6: A286624.
Cf. A276617 (analogous array).
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Jun 28 2017
STATUS
approved
Square array A(n,k) = A276953(n,k)/n!, read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
+10
6
1, 3, 1, 4, 4, 1, 5, 6, 5, 1, 7, 7, 8, 6, 1, 9, 13, 9, 10, 7, 1, 10, 16, 21, 11, 12, 8, 1, 11, 18, 25, 31, 13, 14, 9, 1, 13, 19, 28, 36, 43, 15, 16, 10, 1, 15, 25, 29, 40, 49, 57, 17, 18, 11, 1, 16, 28, 41, 41, 54, 64, 73, 19, 20, 12, 1, 17, 30, 45, 61, 55, 70, 81, 91, 21, 22, 13, 1, 18, 31, 48, 66, 85, 71, 88, 100, 111, 23, 24, 14, 1
OFFSET
1,2
FORMULA
A(n,k) = A276953(n,k)/n!
EXAMPLE
The top left corner of the array:
1, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22
1, 4, 6, 7, 13, 16, 18, 19, 25, 28, 30, 31, 36, 37, 39, 40, 42
1, 5, 8, 9, 21, 25, 28, 29, 41, 45, 48, 49, 60, 61, 64, 65, 68
1, 6, 10, 11, 31, 36, 40, 41, 61, 66, 70, 71, 90, 91, 95, 96, 100
1, 7, 12, 13, 43, 49, 54, 55, 85, 91, 96, 97, 126, 127, 132, 133, 138
1, 8, 14, 15, 57, 64, 70, 71, 113, 120, 126, 127, 168, 169, 175, 176, 182
PROG
(Scheme)
(define (A276616 n) (A276616bi (A002260 n) (A004736 n)))
(define (A276616bi row col) (/ (A276953bi row col) (A000142 row)))
CROSSREFS
Transpose: A276617.
Row 1: A273670, row 2: A276931, row 3: A276934.
For columns, see the rows of transpose A276617.
KEYWORD
nonn,base,tabl
AUTHOR
Antti Karttunen, Sep 22 2016
STATUS
approved
Row 3 of A276616: a(n) = A276933(n) / 6.
+10
5
1, 5, 8, 9, 21, 25, 28, 29, 41, 45, 48, 49, 60, 61, 64, 65, 68, 69, 121, 125, 128, 129, 141, 145, 148, 149, 161, 165, 168, 169, 180, 181, 184, 185, 188, 189, 241, 245, 248, 249, 261, 265, 268, 269, 281, 285, 288, 289, 300, 301, 304, 305, 308, 309, 361, 365, 368, 369, 381, 385, 388, 389, 401, 405, 408, 409, 420, 421, 424
OFFSET
0,2
COMMENTS
Starting offset is 0 (with a(0) = 2) to match with the starting offset of A276933 and A273670.
FORMULA
a(n) = A276933(n) / 6.
PROG
(Scheme) (define (A276934 n) (/ (A276933 n) 6))
CROSSREFS
Row 3 of A276616, column 3 of A276617.
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Sep 23 2016
STATUS
approved
Row 2 of A276616: a(n) = A276932(n)/2.
+10
4
1, 4, 6, 7, 13, 16, 18, 19, 25, 28, 30, 31, 36, 37, 39, 40, 42, 43, 61, 64, 66, 67, 73, 76, 78, 79, 85, 88, 90, 91, 96, 97, 99, 100, 102, 103, 121, 124, 126, 127, 133, 136, 138, 139, 145, 148, 150, 151, 156, 157, 159, 160, 162, 163, 181, 184, 186, 187, 193, 196, 198, 199, 205, 208, 210, 211, 216, 217, 219, 220, 222
OFFSET
0,2
COMMENTS
Starting offset is 0 (with a(0) = 1) to match with the starting offset of A276932 and A273670.
FORMULA
a(n) = A276932(n)/2.
PROG
(define (A276931 n) (/ (A276932 n) 2))
CROSSREFS
Row 2 of A276616, column 2 of A276617.
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Sep 22 2016
STATUS
approved

Search completed in 0.005 seconds