[go: up one dir, main page]

login
Search: a276133 -id:a276133
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of factors of 2 in the factorial of the n-th prime, counted with multiplicity.
+10
7
1, 1, 3, 4, 8, 10, 15, 16, 19, 25, 26, 34, 38, 39, 42, 49, 54, 56, 64, 67, 70, 74, 79, 85, 94, 97, 98, 102, 104, 109, 120, 128, 134, 135, 145, 146, 152, 159, 162, 168, 174, 176, 184, 190, 193, 194, 206, 216, 222, 224, 228, 232, 236, 244, 255, 259, 265, 266, 273, 277
OFFSET
1,3
COMMENTS
n-th prime minus number of 1's in binary representation of n-th prime. [Juri-Stepan Gerasimov, May 17 2010]
LINKS
FORMULA
a(n) = Sum_{k=1..L} floor( p_n /2^k ), where L = log(p_n)/log(2), where p_n is the n-th prime.
a(n) = A000040(n) - A014499(n). [Juri-Stepan Gerasimov, May 17 2010]
MATHEMATICA
lst={}; Do[p=Prime[n]; s=0; While[p>1, p=IntegerPart[p/2]; s+=p; ]; AppendTo[lst, s], {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 28 2009 *)
PROG
(PARI) vector(58, n, valuation(prime(n)!, 2)) \\ Arkadiusz Wesolowski, Feb 22 2014
(PARI) a(n) = prime(n) - hammingweight(prime(n)); \\ Joerg Arndt, Feb 22 2014
CROSSREFS
Cf. A276133 (first differences).
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 26 2003
STATUS
approved
Exponent of highest power of 3 dividing product of composite numbers between n-th prime and (n+1)-st prime.
+10
0
0, 0, 1, 2, 1, 1, 2, 1, 4, 1, 3, 1, 1, 2, 2, 4, 1, 3, 1, 2, 2, 4, 2, 4, 2, 1, 1, 3, 1, 7, 1, 4, 1, 4, 1, 3, 5, 1, 3, 2, 2, 5, 1, 1, 2, 5, 6, 2, 1, 1, 3, 1, 7, 3, 3, 2, 3, 2, 2, 1, 4, 8, 1, 1, 2, 8, 3, 4, 1, 3, 2, 4, 3, 4, 1, 3, 4, 1, 6, 4, 1, 4, 3, 2, 2, 2, 4, 3, 1, 1, 6, 7, 1, 4, 1, 3, 6
OFFSET
1,4
FORMULA
a(n) = A007949(A061214(n)).
a(n) = Sum_{k = A000040(n)..A000040(n + 1)} A007949(k) for n > 2.
MATHEMATICA
Table[IntegerExponent[Times@@Range[Prime[n]+1, Prime[n+1]-1], 3], {n, 100}] (* Harvey P. Dale, Mar 23 2021 *)
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
STATUS
approved

Search completed in 0.005 seconds