[go: up one dir, main page]

login
Search: a275489 -id:a275489
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of Sum_{t>0} log((t + 1)/t)^2.
+10
0
9, 7, 7, 1, 8, 9, 1, 8, 3, 2, 6, 8, 9, 3, 6, 5, 5, 4, 4, 5, 7, 8, 8, 5, 7, 4, 9, 4, 7, 6, 4, 3, 4, 7, 4, 8, 0, 7, 7, 3, 9, 2, 5, 0, 6, 4, 7, 4, 7, 2, 3, 9, 0, 1, 7, 7, 0, 2, 0, 9, 8, 9, 7, 5, 5, 3, 1, 8, 4, 4, 5, 2, 9, 3, 9, 2, 3, 9, 3, 3, 5, 6, 2, 9, 0, 1, 2, 3, 2, 1, 0, 7, 9, 7, 4, 3, 2, 0, 3, 3, 5, 9, 2, 3, 2
OFFSET
0,1
COMMENTS
This constant appears in the asymptotic formula of the number of minimal covering systems with exactly n elements (see Theorem 1.1 in Balister, Bollobás, Morris, Sahasrabudhe and Tiba).
LINKS
P. Balister, B. Bollobás, R. Morris, J. Sahasrabudhe and M. Tiba, The structure and number of Erdős covering systems, arXiv:1904.04806 [math.CO], 2019.
P. Erdős, Egy kongruenciarendszerekrol szóló problémáról, (On a problem concerning congruence-systems, in Hungarian), Mat. Lapok, 4 (1952), 122-128.
FORMULA
From Amiram Eldar, Jun 17 2023: (Start)
Equals 2 * Sum_{k>=1} H(k) * (zeta(k+1)-1) / (k+1), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.
Equals -Sum_{k>=1} zeta'(2*k) / k. (End)
EXAMPLE
0.9771891832689365544578857494764347480773925064747239017702...
MATHEMATICA
First[RealDigits[NSum[(Log[(t + 1)/t])^2, {t, 1, Infinity}, NSumTerms -> 100, Method -> {"NIntegrate", "MaxRecursion" -> 10}, WorkingPrecision -> 100]]]
PROG
(PARI) sumpos(t=1, log((t + 1)/t)^2) \\ Michel Marcus, Apr 26 2019
KEYWORD
nonn,cons
AUTHOR
Stefano Spezia, Apr 24 2019
STATUS
approved

Search completed in 0.053 seconds