[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a262169 -id:a262169
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number A(n,k) of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums with a maximal value <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
+10
12
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 2, 4, 5, 0, 1, 1, 2, 5, 16, 16, 0, 1, 1, 2, 5, 19, 54, 61, 0, 1, 1, 2, 5, 20, 82, 324, 272, 0, 1, 1, 2, 5, 20, 86, 454, 1532, 1385, 0, 1, 1, 2, 5, 20, 87, 516, 2795, 12256, 7936, 0, 1, 1, 2, 5, 20, 87, 521, 3135, 20346, 74512, 50521, 0
OFFSET
0,13
LINKS
FORMULA
A(n,k) = Sum_{i=0..k} A258829(n,i).
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, ...
0, 2, 4, 5, 5, 5, 5, 5, ...
0, 5, 16, 19, 20, 20, 20, 20, ...
0, 16, 54, 82, 86, 87, 87, 87, ...
0, 61, 324, 454, 516, 521, 522, 522, ...
0, 272, 1532, 2795, 3135, 3264, 3270, 3271, ...
MAPLE
b:= proc(u, o, c) option remember; `if`(c<0, 0, `if`(u+o=0, x^c,
(p-> add(coeff(p, x, i)*x^max(i, c), i=0..degree(p)))(add(
b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o))))
end:
A:= (n, k)-> (p-> add(coeff(p, x, i), i=0..min(n, k)))(b(0, n, 0)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
b[u_, o_, c_] := b[u, o, c] = If[c < 0, 0, If[u + o == 0, x^c, Function[p, Sum[Coefficient[p, x, i]*x^Max[i, c], {i, 0, Exponent[p, x]}]][Sum[b[u - j, o - 1 + j, c - 1], {j, 1, u}] + Sum[b[u + j - 1, o - j, c + 1], {j, 1, o}]]]]; A[n_, k_] := Function[p, Sum[Coefficient[p, x, i], {i, 0, Min[n, k]}]][b[0, n, 0]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
CROSSREFS
Main diagonal gives: A258830.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 13 2015
STATUS
approved
Number of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums with a maximal value of seven.
+10
2
1, 7, 522, 4260, 163871, 1572713, 49601660, 554432537, 16431601190, 211104220038, 6214132488281, 90601727479330, 2718687446733807, 44477388811619142, 1378374571651666083, 25055072909382001747, 807272266530396465622, 16165637154045080226474
OFFSET
7,2
LINKS
FORMULA
a(n) = A262169(n) - A262168(n).
MAPLE
b:= proc(u, o, c, k) option remember;
`if`(c<0 or c>k, 0, `if`(u+o=0, 1,
add(b(u-j, o-1+j, c+1, k), j=1..u)+
add(b(u+j-1, o-j, c-1, k), j=1..o)))
end:
a:= n-> b(n, 0$2, 7)-b(n, 0$2, 6):
seq(a(n), n=7..24);
CROSSREFS
Column k=7 of A258829.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 01 2018
STATUS
approved
Number of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums with a maximal value of eight.
+10
2
1, 8, 1040, 9468, 507355, 5313447, 214378961, 2571977379, 92953037066, 1265907917962, 44038999833044, 674142774632948, 23379215615715958, 398561935596289153, 14037530250073013445, 264291741199540446059, 9551899031473405653870, 197148463934806397523934
OFFSET
8,2
LINKS
FORMULA
a(n) = A262170(n) - A262169(n).
MAPLE
b:= proc(u, o, c, k) option remember;
`if`(c<0 or c>k, 0, `if`(u+o=0, 1,
add(b(u-j, o-1+j, c+1, k), j=1..u)+
add(b(u+j-1, o-j, c-1, k), j=1..o)))
end:
a:= n-> b(n, 0$2, 8)-b(n, 0$2, 7):
seq(a(n), n=8..25);
CROSSREFS
Column k=8 of A258829.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 01 2018
STATUS
approved

Search completed in 0.005 seconds