[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a262084 -id:a262084
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers n such that phi(n+4) = phi(n) + 4.
+10
6
3, 7, 12, 13, 18, 19, 24, 28, 36, 37, 40, 43, 66, 67, 79, 88, 97, 103, 109, 124, 127, 163, 184, 193, 223, 229, 232, 277, 307, 313, 328, 349, 379, 397, 424, 439, 457, 463, 487, 499, 508, 613, 643, 664, 673, 712, 739, 757, 769, 823, 853, 859, 877, 883, 904, 907
OFFSET
1,1
COMMENTS
In contrast with A015913, composite solutions are not rare. Prime solutions are common.
From Kevin J. Gomez, Mar 02 2016: (Start)
Composite solutions have two known forms:
n such that n = 4 * (2^p - 1) where 2^p - 1 is a Mersenne prime. (A001348)
n such that n = 8q where q is a Sophie Germain prime. (A005394)
There are composite solutions (such as 36) that do not fit either of these forms.
(End)
LINKS
EXAMPLE
n=1048: phi(1048)=520, phi(1048+4)=524.
MATHEMATICA
Select[Range@1000, EulerPhi@(# + 4)== EulerPhi[#] + 4 &] (* Vincenzo Librandi, Sep 11 2015 *)
Position[Partition[EulerPhi[Range[1000]], 5, 1], _?(#[[1]]+4==#[[5]]&), 1, Heads-> False]//Flatten (* Harvey P. Dale, Dec 18 2019 *)
PROG
(PARI) isok(n) = eulerphi(n+4) == eulerphi(n) + 4; \\ Michel Marcus, Sep 11 2015
(Magma) [n: n in [1..1000] | EulerPhi(n+4) eq EulerPhi(n)+4]; // Vincenzo Librandi, Sep 11 2015
CROSSREFS
Cf. A015913 (sigma(n+4) = sigma(n) + 4).
Cf. A001838 (k=2), this sequence (k=4), A262084 (k=6), A262085 (k=8), A262086 (k=10).
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 17 2000
STATUS
approved
Numbers n such that phi(n + 8) = phi(n) + 8 where phi(n) = A000010(n) is Euler's totient function.
+10
4
3, 5, 11, 23, 24, 29, 36, 42, 48, 50, 53, 56, 59, 71, 72, 80, 89, 101, 102, 125, 131, 132, 149, 173, 176, 191, 230, 233, 248, 263, 269, 359, 368, 389, 401, 431, 449, 464, 479, 491, 563, 569, 593, 599, 638, 653, 656, 683, 701, 719, 743, 761, 821, 848, 911, 929, 983
OFFSET
1,1
COMMENTS
Sequence includes numbers n such that n and n + 8 are both prime (A023202).
Sequence also includes numbers n equal to 8*(a Mersenne prime) (cf A000668).
Sequence also includes n such that n/16 and n/8 + 1 are both odd primes.
Contains more composites than sequences A262084 and A262086. This is most likely due to the fact that 8 is a power of 2, as in A001838.
EXAMPLE
3 since phi(11) = phi(3) + 8 (3 and 11 are both prime).
24 is a solution since phi(32) = phi(24) + 8 (24 is 8 * 3; 3 is a Mersenne prime).
MAPLE
select(t -> numtheory:-phi(t+8) = numtheory:-phi(t)+8, [$1..1000]); # Robert Israel, Mar 04 2016
MATHEMATICA
Select[Range@1000, EulerPhi@(# + 8)== EulerPhi[#] + 8 &] (* Vincenzo Librandi, Sep 11 2015 *)
PROG
(Magma) [n: n in [1..1000] | EulerPhi(n+8) eq EulerPhi(n)+8]; // Vincenzo Librandi, Sep 11 2015
(PARI) is(n)=eulerphi(n + 8) == eulerphi(n) + 8 \\ Anders Hellström, Sep 11 2015
(Sage) [n for n in (1..1000) if euler_phi(n+8) == euler_phi(n)+8] # Bruno Berselli, Mar 04 2016
CROSSREFS
Cf. A000010.
Cf. A001838 (k=2), A056772 (k=4), A262084 (k=6), A262086 (k=10).
KEYWORD
nonn,easy
AUTHOR
Kevin J. Gomez, Sep 10 2015
STATUS
approved
Numbers n such that phi(n + 10) = phi(n) + 10 where phi(n) = A000010(n) is Euler's totient function.
+10
4
3, 7, 13, 19, 31, 36, 37, 43, 61, 73, 79, 97, 103, 127, 139, 157, 163, 181, 223, 229, 241, 271, 283, 307, 337, 349, 373, 379, 409, 421, 433, 439, 457, 499, 547, 577, 607, 631, 643, 673, 691, 709, 733, 751, 787, 811, 829, 853, 877, 919, 937, 967
OFFSET
1,1
COMMENTS
The only composite term less than 10^11 is 36. - Giovanni Resta, Sep 14 2015
EXAMPLE
3 is in the sequence since phi(13) = phi(3) + 10.
MATHEMATICA
Select[Range@1000, EulerPhi@(# + 10) == EulerPhi[#] + 10 &] (* Vincenzo Librandi, Sep 11 2015 *)
PROG
(Magma) [n: n in [1..1000] | EulerPhi(n+10) eq EulerPhi(n)+10]; // Vincenzo Librandi, Sep 11 2015
(PARI) is(n)=eulerphi(n + 10) == eulerphi(n) + 10 \\ Anders Hellström, Sep 11 2015
CROSSREFS
Cf. A001838 (k=2), A056772 (k=4), A262084 (k=6), A262085 (k=8), this sequence (k=10).
KEYWORD
nonn,easy
AUTHOR
Kevin J. Gomez, Sep 10 2015
STATUS
approved

Search completed in 0.006 seconds