[go: up one dir, main page]

login
Search: a261045 -id:a261045
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of solutions to c(1)*prime(1) +...+ c(2n+1)*prime(2n+1) = 0, where c(i) = +-1 for i > 1, c(1) = 1.
+10
37
0, 1, 1, 2, 5, 13, 39, 122, 392, 1286, 4341, 14860, 51085, 178402, 634511, 2260918, 8067237, 29031202, 105250449, 383579285, 1404666447, 5171065198, 19141008044, 71124987313, 263548339462, 983424096451, 3684422350470, 13818161525284, 51938115653565
OFFSET
0,4
COMMENTS
c(1)*prime(1) + ... + c(2n)*prime(2n) = 0 has no solution, because the l.h.s. has an odd number of odd terms and the r.h.s. is even.
LINKS
Ray Chandler, Table of n, a(n) for n = 0..1000 (first 101 terms from T. D. Noe)
FORMULA
Conjecture: limit_{n->oo} a(n)^(1/n) = 4. - Vaclav Kotesovec, Jun 05 2019
a(n) is the constant term in expansion of (1/2) * Product_{k=1..2*n+1} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 25 2024
EXAMPLE
a(1) = 1 because 2 + 3 - 5 = 0,
a(2) = 1 because 2 - 3 + 5 + 7 - 11 = 0,
a(3) = 2 because
2 + 3 - 5 - 7 + 11 + 13 - 17 =
2 + 3 - 5 + 7 - 11 - 13 + 17 = 0.
a(4) = 5 because
2 - 3 - 5 + 7 + 11 + 13 + 17 - 19 - 23 =
2 - 3 + 5 - 7 + 11 + 13 - 17 + 19 - 23 =
2 - 3 + 5 + 7 - 11 - 13 + 17 + 19 - 23 =
2 - 3 + 5 + 7 - 11 + 13 - 17 - 19 + 23 =
2 + 3 + 5 - 7 - 11 - 13 + 17 - 19 + 23 = 0
and there are no others up through the ninth prime.
MAPLE
sp:= proc(n) sp(n):= `if`(n=1, 0, ithprime(n)+sp(n-1)) end:
b := proc(n, i) option remember; `if`(n>sp(i), 0, `if`(i=1, 1,
b(n+ithprime(i), i-1)+ b(abs(n-ithprime(i)), i-1)))
end:
a:= n-> b(2, 2*n+1):
seq(a(n), n=0..40); # Alois P. Heinz, Aug 05 2012
MATHEMATICA
Do[a = Table[ Prime[i], {i, 1, n} ]; c = 0; k = 2^(n - 1); While[k < 2^n, If[ Apply[ Plus, a*(-1)^(IntegerDigits[k, 2] + 1)] == 0, c++ ]; k++ ]; Print[c], {n, 1, 32, 2} ]
PROG
(PARI) A022894={a(n, s=0-prime(1), p=1)=if(n<=s, if(s==p, n==s, a(abs(n-p), s-p, precprime(p-1))+a(n+p, s-p, precprime(p-1))), if(s<=0, a(abs(s), max(sum(i=p+1, p+(p>1)+2*n, prime(i)), 1), prime(p+(p>1)+2*n))))} \\ M. F. Hasler, Aug 09 2015
CROSSREFS
Cf. A113040, A215036, A083309 (sums of odd primes).
Cf. A022895, A022896 (r.h.s. = 1 & 2, using all primes), A083309 and A022897 - A022899 (using primes >= 3), A022900 - A022902 (using primes >=5), A022903, A022904, A022920 (using primes >= 7); A261061 - A261063 & A261045 (r.h.s. = -1); A261057, A261059, A261060 & A261044 (r.h.s. = -2).
Bisection (odd part) of A306443.
KEYWORD
nonn,nice
EXTENSIONS
Edited by Robert G. Wilson v, Jan 29 2002
More terms from T. D. Noe, Jan 16 2007
Edited by M. F. Hasler, Aug 09 2015
STATUS
approved
a(n) is the number of times that sums 3 +- 5 +- 7 +- 11 +- ... +- prime(2n+1) of the first 2n odd primes is zero. There are 2^(2n-1) choices for the sign patterns.
+10
27
0, 0, 1, 2, 7, 19, 63, 197, 645, 2172, 7423, 25534, 89218, 317284, 1130526, 4033648, 14515742, 52625952, 191790090, 702333340, 2585539586, 9570549372, 35562602950, 131774529663, 491713178890, 1842214901398, 6909091641548
OFFSET
1,4
COMMENTS
The frequency of each possible sum is computed by the Mathematica program without explicitly computing the individual sums. Let S = 3 + 5 + 7 + ... + prime(2n+1). Because the primes do not grow very fast, it is easy to show that, for n > 2, all even numbers between -S+20 and S-20 occur at least once as a sum.
a(n) is the maximal number of subsets of {prime(2), prime(3), ..., prime(n+1)} that share the same sum. Cf. A025591, A083527.
See A238894 for a more general sequence that looks at all sums formed. - T. D. Noe, Mar 07 2014
LINKS
Ray Chandler, Table of n, a(n) for n = 1..1000 (first 100 terms from T. D. Noe)
FORMULA
a(n) = A022897(2n). - M. F. Hasler, Aug 08 2015
EXAMPLE
a(3) = 1 because there is only one sign pattern of the first six odd primes that yields zero: 3 + 5 + 7 - 11 + 13 - 17.
MATHEMATICA
d={1, 0, 0, 1}; nMax=32; zeroLst={}; Do[p=Prime[n+1]; d=PadLeft[d, Length[d]+p]+PadRight[d, Length[d]+p]; If[0==Mod[n, 2], AppendTo[zeroLst, d[[(Length[d]+1)/2]]]], {n, 2, nMax}]; zeroLst/2
PROG
(PARI) A083309(n, rhs=0, firstprime=2)={rhs-=prime(firstprime); my(p=vector(2*n-2+bittest(rhs, 0), i, prime(i+firstprime))); sum(i=1, 2^#p-1, sum(j=1, #p, (-1)^bittest(i, j-1)*p[j])==rhs)} \\ For illustrative purpose, too slow for n >> 10. - M. F. Hasler, Aug 08 2015
CROSSREFS
Cf. A022894 (use all primes in the sum), A022895 (r.h.s. = 1), A022896 (r.h.s. = 2), A022897 (interleaved 0 for odd number of terms), ..., A022903 (using primes >= 7), A022904, A022920; A261061 - A261063 and A261044 (r.h.s. = -1); A261057, A261059, A261060, A261045 (r.h.s. = -2).
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 29 2003
STATUS
approved
Number of solutions to c(1)*prime(4) + ... + c(n)*prime(n+3) = 2, where c(i) = +-1 for i > 1, c(1) = 1.
+10
20
0, 0, 0, 0, 0, 0, 0, 1, 0, 7, 0, 12, 0, 61, 0, 131, 0, 472, 0, 2039, 0, 5924, 0, 21095, 0, 76058, 0, 274023, 0, 1032989, 0, 3694643, 0, 12987172, 0, 48417270, 0, 174274092, 0, 642785629, 0, 2402825962, 0, 8918414212, 0, 32868915523, 0, 123145191037, 0
OFFSET
1,10
COMMENTS
Each second entry is 0 because the primes that are involved are all odd and the right hand side is even. - R. J. Mathar, Aug 06 2015
LINKS
FORMULA
a(2n-1) = 0 for all n >= 1.
MATHEMATICA
b[n_, s_, p_] := b[n, s, p] = If[n <= s, If[s == p, Boole[n == s], b[Abs[n - p], s - p, NextPrime[p - 1, -1]] + b[n + p, s - p, NextPrime[p - 1, -1] ]], If[s <= 0, b[Abs[s], Sum[Prime[i], {i, p + 1, p + n - 1}], Prime[p + n - 1]]]] /. Null -> 0; a[n_] := b[n, 2 - Prime[4], 4]; Array[a, 50] (* Jean-François Alcover, Feb 14 2018, after M. F. Hasler *)
PROG
(PARI) A022920(n)={my(p=vector(n-1, i, prime(i+4))); sum(i=1, 2^(n-1), sum(j=1, #p, (1-bittest(i, j-1)<<1)*p[j], 7)==2)} \\ For illustrative purpose; too slow for n >> 20. - M. F. Hasler, Aug 08 2015
(PARI) a(n, s=2-prime(4), p=4)=if(n<=s, if(s==p, n==s, a(abs(n-p), s-p, precprime(p-1))+a(n+p, s-p, precprime(p-1))), if(s<=0, a(abs(s), sum(i=p+1, p+n-1, prime(i)), prime(p+n-1)))) \\ M. F. Hasler, Aug 09 2015
CROSSREFS
Cf. A022894, A022895, A022896 (r.h.s. = 0, 1 & 2, using all primes), A083309 and A022897 - A022899 (using primes >= 3), A022900 - A022902 (using primes >=5), A022903, A022904 (r.h.s. = 0 & 1, using primes >= 7); A261061 - A261063 & A261045 (r.h.s. = -1); A261057, A261059, A261060 & A261044 (r.h.s. = -2).
KEYWORD
nonn
EXTENSIONS
Corrected by R. J. Mathar, Aug 06 2015
a(22)-a(49) from Alois P. Heinz, Aug 06 2015
STATUS
approved
Number of solutions to c(1)*prime(1)+...+c(2n)*prime(2n) = -1, where c(i) = +-1 for i > 1, c(1) = 1.
+10
20
1, 0, 2, 3, 8, 23, 68, 221, 709, 2344, 8006, 27585, 95114, 335645, 1202053, 4267640, 15317698, 55248527, 200711160, 733697248, 2696576651, 9941588060, 36928160817, 136800727634, 508780005068, 1901946851732, 7133247301621, 26782446410398, 100862459737318
OFFSET
1,3
COMMENTS
There cannot be a solution for an odd number of terms on the l.h.s. because there would be an even number of odd terms but the r.h.s. is odd.
LINKS
FORMULA
Conjecture: limit_{n->infinity} a(n)^(1/n) = 4. - Vaclav Kotesovec, Jun 05 2019
a(n) = [x^3] Product_{k=2..2*n} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 31 2024
EXAMPLE
a(1) = 1 counts the solution prime(1) - prime(2) = -1.
a(2) = 0 because prime(1) +- prime(2) +- prime(3) +- prime(4) is always different from -1.
a(3) = 2 counts the two solutions prime(1) - prime(2) + prime(3) - prime(4) - prime(5) + prime(6) = -1 and prime(1) - prime(2) - prime(3) + prime(4) + prime(5) - prime(6) = -1.
MAPLE
s:= proc(n) option remember;
`if`(n<2, 0, ithprime(n)+s(n-1))
end:
b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=1, 1,
b(abs(n-ithprime(i)), i-1)+b(n+ithprime(i), i-1)))
end:
a:= n-> b(3, 2*n):
seq(a(n), n=1..30); # Alois P. Heinz, Aug 08 2015
MATHEMATICA
s[n_] := s[n] = If[n<2, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 1, 1, b[Abs[n-Prime[i]], i-1] + b[n+Prime[i], i-1]]]; a[n_] := b[3, 2*n]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
PROG
(PARI) A261061(n, rhs=-1, firstprime=1)={rhs-=prime(firstprime); my(p=vector(2*n-2+bittest(rhs, 0), i, prime(i+firstprime))); sum(i=1, 2^#p-1, sum(j=1, #p, (-1)^bittest(i, j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.
CROSSREFS
Cf. A261062 - A261063 and A261044 (starting with prime(2), prime(3) resp. prime(4)), A022894 - A022904, A083309, A022920 (r.h.s. = 0, 1 or 2), A261057, A261059, A261060, A261045 (r.h.s. = -2).
KEYWORD
nonn
AUTHOR
M. F. Hasler, Aug 08 2015
EXTENSIONS
a(14)-a(29) from Alois P. Heinz, Aug 08 2015
STATUS
approved
Number of solutions to c(1)*prime(1)+...+c(2n-1)*prime(2n-1) = -2, where c(i) = +-1 for i > 1, c(1) = 1.
+10
19
0, 0, 1, 1, 5, 13, 40, 123, 388, 1284, 4332, 14868, 51094, 178361, 634422, 2260717, 8066841, 29030051, 105247340, 383574146, 1404657053, 5171018981, 19140750300, 71124341227, 263546155710, 983417309702, 3684399940711, 13818092760075, 51937827473594, 195956606402526
OFFSET
1,5
COMMENTS
There cannot be a solution for an even number of terms on the l.h.s. because there would be an odd number of odd terms but the r.h.s. is even.
LINKS
FORMULA
a(n) = A113041(n) - A022896(2n-1).
a(n) = [x^4] Product_{k=2..2*n-1} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 31 2024
EXAMPLE
a(1) = a(2) = 0 because prime(1) and prime(1) +- prime(2) +- prime(3) is always different from -2.
a(3) = 1 because prime(1) - prime(2) - prime(3) - prime(4) + prime(5) = -2.
MAPLE
s:= proc(n) option remember;
`if`(n<2, 0, ithprime(n)+s(n-1))
end:
b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=1, 1,
b(abs(n-ithprime(i)), i-1)+b(n+ithprime(i), i-1)))
end:
a:= n-> b(4, 2*n-1):
seq(a(n), n=1..30); # Alois P. Heinz, Aug 08 2015
MATHEMATICA
s[n_] := s[n] = If[n<2, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 1, 1, b[Abs[n-Prime[i]], i-1] + b[n+Prime[i], i-1]]]; a[n_] := b[4, 2*n-1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
PROG
(PARI) A261057(n, rhs=-2, firstprime=1)={rhs-=prime(firstprime); my(p=vector(2*n-2+bittest(rhs, 0), i, prime(i+firstprime))); sum(i=1, 2^#p-1, sum(j=1, #p, (-1)^bittest(i, j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.
(PARI) a(n, s=-2-prime(1), p=1)={if(n<=s, if(s==p, n==s, a(abs(n-p), s-p, precprime(p-1))+a(n+p, s-p, precprime(p-1))), if(s<=0, a(abs(s), max(sum(i=p+1, p+=2*n-2+bittest(s, 0), prime(i)), 1), prime(p))))} \\ M. F. Hasler, Aug 09 2015
CROSSREFS
Cf. A261059, A261060, A261045 (starting with prime(2) - prime(4)), A261061 - A261063 and A261044 (r.h.s. = -1), A022894 - A022904, A083309, A022920 (r.h.s. = 0, 1 or 2); A113040, A113041, A113042.
KEYWORD
nonn
AUTHOR
M. F. Hasler, Aug 08 2015
EXTENSIONS
a(26)-a(30) from Alois P. Heinz, Jan 04 2019
STATUS
approved
Number of solutions to c(1)*prime(3) + ... + c(2n-1)*prime(2n+1) = -1, where c(i) = +-1 for i > 1, c(1) = 1.
+10
19
0, 0, 0, 1, 6, 8, 40, 67, 373, 1232, 3330, 13656, 47111, 164957, 582042, 1967152, 7129046, 26655235, 94956602, 353789267, 1300061367, 4765080122, 17726643505, 66038899483, 245431428625, 919911458949, 3457983108462, 12974054097333, 49016641868213, 185510228030858
OFFSET
1,5
COMMENTS
There cannot be a solution for an even number of terms on the l.h.s. because all terms are odd but the r.h.s. is odd, too.
LINKS
FORMULA
a(n) = [x^6] Product_{k=4..2*n+1} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 31 2024
EXAMPLE
a(1) = a(2) = 0 because prime(3) and prime(3) +- prime(4) +- prime(5) are different from -1 for any choice of the signs.
a(3) = 0 because the same sums prime(3) +- ... +- prime(7) is also always different from -1 for any choice of the signs.
a(4) = 1 because prime(3) - prime(4) - prime(5) - prime(6) - prime(7) + prime(8) + prime(9) = -1 is the only solution.
MAPLE
s:= proc(n) option remember;
`if`(n<4, 0, ithprime(n)+s(n-1))
end:
b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=3, 1,
b(abs(n-ithprime(i)), i-1)+b(n+ithprime(i), i-1)))
end:
a:= n-> b(6, 2*n+1):
seq(a(n), n=1..30); # Alois P. Heinz, Aug 08 2015
MATHEMATICA
s[n_] := s[n] = If[n<4, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 3, 1, b[Abs[n-Prime[i]], i-1] + b[n+Prime[i], i-1]]]; a[n_] := b[6, 2*n+1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
PROG
(PARI) A261063(n, rhs=-1, firstprime=3)={rhs-=prime(firstprime); my(p=vector(2*n-2+bittest(rhs, 0), i, prime(i+firstprime))); sum(i=1, 2^#p-1, sum(j=1, #p, (-1)^bittest(i, j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.
CROSSREFS
Cf. A261061 - A261062 (starting with prime(1) resp. prime(2)), A261044 (starting with prime(4)), A022894 - A022904, A083309, A022920 (r.h.s. = 0, 1 or 2), A261057, A261059, A261060, A261045 (r.h.s. = -2).
KEYWORD
nonn
AUTHOR
M. F. Hasler, Aug 08 2015
EXTENSIONS
a(15)-a(30) from Alois P. Heinz, Aug 08 2015
STATUS
approved
Number of solutions to c(1)*prime(2)+...+c(2n)*prime(2n+1) = -2, where c(i) = +-1 for i > 1, c(1) = 1.
+10
18
1, 0, 2, 1, 4, 25, 47, 237, 562, 1965, 7960, 24148, 85579, 307569, 1104519, 4106381, 14710760, 52113647, 193181449, 698356631, 2574590311, 9600573372, 35644252223, 131545038705, 492346772797, 1843993274342, 6903884199622, 25984680496124, 97937400336407
OFFSET
1,3
COMMENTS
There cannot be a solution for an odd number of terms on the l.h.s. because all terms are odd but the r.h.s. is even.
LINKS
FORMULA
a(n) = [x^5] Product_{k=3..2*n+1} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 31 2024
EXAMPLE
a(1) = 1 because prime(2) - prime(3) = -2.
a(2) = 0 because prime(2) +- prime(3) +- prime(4) +- prime(5) is different from -2 for any choice of the signs.
a(3) = 2 counts the 2 solutions prime(2) - prime(3) + prime(4) - prime(5) - prime(6) + prime(7) = -2 and prime(2) - prime(3) - prime(4) + prime(5) + prime(6) - prime(7) = -2.
MAPLE
s:= proc(n) option remember;
`if`(n<3, 0, ithprime(n)+s(n-1))
end:
b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=2, 1,
b(abs(n-ithprime(i)), i-1)+b(n+ithprime(i), i-1)))
end:
a:= n-> b(5, 2*n+1):
seq(a(n), n=1..30); # Alois P. Heinz, Aug 08 2015
MATHEMATICA
s[n_] := s[n] = If[n<3, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 2, 1, b[Abs[n-Prime[i]], i-1] + b[n+Prime[i], i-1]]]; a[n_] := b[5, 2*n+1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
PROG
(PARI) A261059(n, rhs=-2, firstprime=2)={rhs-=prime(firstprime); my(p=vector(2*n-2+bittest(rhs, 0), i, prime(i+firstprime))); sum(i=1, 2^#p-1, sum(j=1, #p, (-1)^bittest(i, j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.
(PARI) a(n, s=-2-3, p=2)=if(n<=s, if(s==p, n==s, a(abs(n-p), s-p, precprime(p-1))+a(n+p, s-p, precprime(p-1))), if(s<=0, a(abs(s), sum(i=p+1, p+2*n-1, prime(i)), prime(p+n*2-1))))
CROSSREFS
Cf. A261057 (starting with prime(1)), A261060 (starting with prime(3)), A261045 (starting with prime(4)), A261061 - A261063 and A261044 (r.h.s. = -1), A022894 - A022904, A083309, A022920 (r.h.s. = 0, 1 or 2), .
KEYWORD
nonn
AUTHOR
M. F. Hasler, Aug 08 2015
EXTENSIONS
a(15)-a(29) from Alois P. Heinz, Aug 08 2015
STATUS
approved
Number of solutions to c(1)*prime(3) + ... + c(2n)*prime(2n+2) = -2, where c(i) = +-1 for i > 1, c(1) = 1.
+10
18
1, 0, 2, 1, 9, 22, 38, 143, 676, 1815, 7434, 22452, 87485, 290873, 1092072, 3894381, 13988849, 49672279, 184745525, 677809709, 2495632892, 9260315018, 34280441347, 127419049587, 474867366809, 1781565475308, 6700749901259, 25230023849115, 95215110677472
OFFSET
1,3
COMMENTS
There cannot be a solution for an odd number of terms on the l.h.s. because all terms are odd but the r.h.s. is even.
LINKS
FORMULA
a(n) = [x^7] Product_{k=4..2*n+2} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 31 2024
EXAMPLE
a(1) = 1 because prime(3) - prime(4) = -2.
a(2) = 0 because prime(3) +- prime(4) +- prime(5) +- prime(6) is different from -2 for any choice of the signs.
a(3) = 2 counts the two solutions prime(3) - prime(4) + prime(5) - prime(6) - prime(7) + prime(8) = 5 - 7 + 11 - 13 - 17 + 19 = -2 and prime(3) - prime(4) - prime(5) + prime(6) + prime(7) - prime(8) = 5 - 7 - 11 + 13 + 17 - 19 = -2.
MAPLE
s:= proc(n) option remember;
`if`(n<4, 0, ithprime(n)+s(n-1))
end:
b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=3, 1,
b(abs(n-ithprime(i)), i-1)+b(n+ithprime(i), i-1)))
end:
a:= n-> b(7, 2*n+2):
seq(a(n), n=1..30); # Alois P. Heinz, Aug 08 2015
MATHEMATICA
s[n_] := s[n] = If[n<4, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 3, 1, b[Abs[n-Prime[i]], i-1]+b[n+Prime[i], i-1]]]; a[n_] := b[7, 2*n+2]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
PROG
(PARI) a(n, rhs=-2, firstprime=3)={rhs-=prime(firstprime); my(p=vector(2*n-2+bittest(rhs, 0), i, prime(i+firstprime))); sum(i=1, 2^#p-1, sum(j=1, #p, (-1)^bittest(i, j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.
CROSSREFS
Cf. A261057, A261059 and A261045 (starting with prime(1), prime(2) and prime(4)), A261061 - A261063 and A261044 (r.h.s. = -1), A022894 - A022904, A083309, A022920 (r.h.s. = 0, 1 or 2).
KEYWORD
nonn
AUTHOR
M. F. Hasler, Aug 08 2015
EXTENSIONS
a(14)-a(29) from Alois P. Heinz, Aug 08 2015
STATUS
approved
Number of solutions to +-p(1)+-p(2)+-...+-p(2n)=1 where p(i) is the i-th prime.
+10
17
1, 1, 3, 6, 16, 45, 138, 439, 1417, 4698, 16021, 55146, 190274, 671224, 2404289, 8535117, 30635869, 110496946, 401422210, 1467402238, 5393176633, 19883249002, 73856531314, 273602448261, 1017563027699, 3803902663467, 14266523388813, 53564969402478
OFFSET
1,3
COMMENTS
+-p(1)+-p(2)+-...+-p(2n+1)=1 has no solutions because the l.h.s. is even.
LINKS
Alois P. Heinz and Ray Chandler, Table of n, a(n) for n = 1..1000 (first 130 terms from Alois P. Heinz)
FORMULA
a(n) = A022895(2n) + A261061(n). - M. F. Hasler, Aug 09 2015
Conjecture: limit_{n->infinity} a(n)^(1/n) = 4. - Vaclav Kotesovec, Jun 05 2019
a(n) = [x^1] Product_{k=1..2*n} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 25 2024
EXAMPLE
2 + 3 + 5 - 7 + 11 - 13 = - 2 + 3 + 5 - 7 - 11 + 13 = - 2 + 3 - 5 + 7 + 11 - 13 = 1 so a(3) = 3.
MAPLE
A113040:=proc(n) local i, j, p, t; t:= NULL; for j from 2 to 2*n by 2 do p:=1; for i to j do p:=p*(x^(-ithprime(i))+x^(ithprime(i))); od; t:=t, coeff(p, x, 1); od; t; end;
# second Maple program:
sp:= proc(n) sp(n):= `if`(n=0, 0, ithprime(n)+sp(n-1)) end:
b := proc(n, i) option remember; `if`(n>sp(i), 0, `if`(i=0, 1,
b(n+ithprime(i), i-1)+ b(abs(n-ithprime(i)), i-1)))
end:
a:= n-> b(1, 2*n):
seq(a(n), n=1..40); # Alois P. Heinz, Aug 05 2012
MATHEMATICA
sp[n_] := If[n == 0, 0, Prime[n]+sp[n-1]]; b[n_, i_] := b[n, i] =If[n > sp[i], 0, If[i == 0, 1, b[n+Prime[i], i-1] + b[Abs[n-Prime[i]], i-1]]]; a[n_] := b[1, 2*n]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
CROSSREFS
Bisection (even part) of A306443.
KEYWORD
nonn
AUTHOR
Floor van Lamoen, Oct 12 2005
STATUS
approved
Number of solutions to c(1)*prime(4)+...+c(n)*prime(n+3) = -2, where c(i) = +-1 for i > 1, c(1) = 1.
+10
17
0, 0, 0, 0, 0, 0, 0, 2, 0, 5, 0, 18, 0, 48, 0, 170, 0, 540, 0, 1868, 0, 6385, 0, 22247, 0, 79355, 0, 282754, 0, 1008714, 0, 3627599, 0, 13156851, 0, 47949883, 0, 175599692, 0, 646384942, 0, 2392644640, 0, 8890619925, 0, 32943781423, 0, 122928406923, 0
OFFSET
1,8
COMMENTS
Each second entry is 0 because the terms on the l.h.s. are all odd and the r.h.s. is even.
FORMULA
a(2n-1) = 0 for all n >= 1.
EXAMPLE
a(8) = 2 counts the two solutions prime(4) - prime(5) + prime(6) - prime(7) - prime(8) + prime(9) - prime(10) + prime(11) = -2 and prime(4) - prime(5) - prime(6) + prime(7) + prime(8) - prime(9) - prime(10) + prime(11) = -2.
PROG
(PARI) A261044(n, rhs=-2, firstprime=4)={rhs-=prime(firstprime); my(p=vector(n-1, i, prime(i+firstprime))); sum(i=1, 2^#p-1, sum(j=1, #p, (-1)^bittest(i, j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.
CROSSREFS
Cf. A261061 - A261063 (starting with prime(1), prime(2) and prime(3)), A022894 - A022904, A083309, A022920 (r.h.s. = 0, 1 or 2), A261057, A261059, A261060, A261045 (r.h.s. = -2).
KEYWORD
nonn
AUTHOR
M. F. Hasler, Aug 08 2015
EXTENSIONS
a(25)-a(49) from Alois P. Heinz, Aug 08 2015
STATUS
approved

Search completed in 0.012 seconds