[go: up one dir, main page]

login
Search: a260902 -id:a260902
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = (-3*(-1)^n + Sum_{k>=0} A000108(k)*k^n/6^k)/sqrt(3), where A000108 are Catalan numbers.
+10
3
-1, 2, -1, 5, 20, 197, 2219, 30620, 496565, 9265037, 195535514, 4605925535, 119796721835, 3410051954402, 105449267146859, 3520120318516625, 126168879827914580, 4832661370036811417, 197001989531658791879, 8515772839409988885140, 389080859811496699020425
OFFSET
0,2
LINKS
FORMULA
Sum_{k >= 0} A000108(k)*k^n/6^k = a(n)*sqrt(3) + 3*(-1)^n.
a(n) ~ sqrt(2) * n^(n-1) / (sqrt(3) * exp(n) * log(3/2)^(n-1/2)). - Vaclav Kotesovec, Nov 17 2015
E.g.f.: -sqrt( exp(-x) * (-2+3*exp(-x)) ). - Seiichi Manyama, Oct 21 2021
EXAMPLE
For n = 5, Sum_{k>=0} A000108(k)*k^5/6^k = 197*sqrt(3) - 3, so a(5) = 197.
MATHEMATICA
Table[(-3 (-1)^n + Sum[CatalanNumber[k] k^n/6^k, {k, 0, Infinity}])/Sqrt[3], {n, 0, 20}]
PROG
(PARI) vector(20, n, n--; round((suminf(k=0, binomial(2*k, k)/(k+1)*k^n/6^k) - 3*(-1)^n)/sqrt(3))) \\ Altug Alkan, Nov 16 2015
(PARI) N=20; x='x+O('x^N); Vec(serlaplace(-sqrt(exp(-x)*(-2+3*exp(-x))))) \\ Seiichi Manyama, Oct 21 2021
CROSSREFS
KEYWORD
sign
AUTHOR
STATUS
approved
Expansion of e.g.f. sqrt(exp(x)*(2-exp(x))).
+10
3
1, 0, -1, -3, -10, -45, -271, -2058, -18775, -199335, -2410516, -32683563, -490870315, -8087188200, -144994236661, -2810079139143, -58536519252130, -1304198088413265, -30946462816602331, -779104979758256298, -20742005411397108595, -582214473250983046155, -17184302765073000634276
OFFSET
0,4
LINKS
FORMULA
a(n) ~ -sqrt(2) * n^(n-1) / (log(2)^(n - 1/2) * exp(n)). - Vaclav Kotesovec, Oct 21 2021
MATHEMATICA
m = 22; Range[0, m]! * CoefficientList[Series[Sqrt[Exp[x]*(2 - Exp[x])], {x, 0, m}], x] (* Amiram Eldar, Oct 19 2021 *)
PROG
(PARI) my(x='x+O('x^25)); Vec(serlaplace(sqrt(exp(x)*(2-exp(x)))))
KEYWORD
sign
AUTHOR
Michel Marcus, Oct 19 2021
STATUS
approved

Search completed in 0.006 seconds