Displaying 1-6 of 6 results found.
page
1
Permutation of nonnegative integers: a(0) = 0, a(n) = A268717(1+ A268825(n-1)).
+20
6
0, 1, 3, 2, 6, 7, 5, 12, 4, 10, 14, 13, 15, 30, 26, 25, 27, 11, 9, 24, 8, 54, 50, 49, 51, 19, 17, 48, 16, 31, 29, 20, 28, 18, 22, 21, 23, 102, 98, 97, 99, 35, 33, 96, 32, 47, 45, 36, 44, 34, 38, 37, 39, 55, 53, 60, 52, 58, 62, 61, 63, 46, 42, 41, 43, 59, 57, 40, 56, 198, 194, 193, 195, 67, 65, 192, 64, 79, 77, 68, 76, 66, 70, 69, 71, 87
COMMENTS
The "fifth shifted power" of permutation A268717.
MATHEMATICA
A003188[n_]:=BitXor[n, Floor[n/2]]; A006068[n_]:=If[n<2, n, Block[{m = A006068[Floor[n/2]]}, 2m + Mod[Mod[n, 2] + Mod[m, 2], 2]]]; A268717[n_]:=If[n<1, 0, A003188[ 1 + A006068[n - 1]]]; A268823[n_]:= If[n<2, n, A268717[1 + A268717[1 + A268717[n - 2]]]]; A268825[n_]:=If[n<1, 0, A268717[1 + A268823[n - 1]]]; A268827[n_]:=If[n<1, 0, A268717[1 + A268825[n - 1]]]; Table[ A268827[n], {n, 0, 100}] (* Indranil Ghosh, Apr 03 2017 *)
PROG
(PARI) A003188(n) = bitxor(n, n\2);
(Python)
if n<2: return n
else:
return 2*m + (n%2 + m%2)%2
0, 1, 3, 6, 2, 12, 4, 7, 5, 24, 8, 11, 9, 13, 15, 10, 14, 48, 16, 19, 17, 21, 23, 18, 22, 25, 27, 30, 26, 20, 28, 31, 29, 96, 32, 35, 33, 37, 39, 34, 38, 41, 43, 46, 42, 36, 44, 47, 45, 49, 51, 54, 50, 60, 52, 55, 53, 40, 56, 59, 57, 61, 63, 58, 62, 192, 64, 67, 65, 69, 71, 66, 70, 73, 75, 78, 74, 68, 76, 79, 77, 81
FORMULA
Other identities. For all n >= 0:
A101080(n,a(n+1)) = 1. [The Hamming distance between n and a(n+1) is always one.]
MATHEMATICA
A003188[n_] := BitXor[n, Floor[n/2]]; A006068[n_] := If[n == 0, 0, BitXor @@ Table[Floor[n/2^m], {m, 0, Floor[Log[2, n]]}]]; a[n_] := If[n == 0, 0, A003188[1 + A006068[n-1]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 23 2016 *)
PROG
(PARI) A003188(n) = bitxor(n, floor(n/2));
A006068(n) = if(n<2, n, {my(m = A006068(floor(n/2))); 2*m + (n%2 + m%2)%2});
(Python)
if n<2: return n
return 2*m + (n%2 + m%2)%2
(Python)
k, m = n-1, n-1>>1
while m > 0:
k ^= m
m >>= 1
CROSSREFS
Row 1 and column 1 of array A268715 (without the initial zero).
Cf. A268817 ("square" of this permutation).
Square array A(r,c): A(0,c) = c, A(r,0) = 0, A(r>=1,c>=1) = A003188(1+ A006068(A(r-1,c-1))) = A268717(1+A(r-1,c-1)), read by descending antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...
+10
13
0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 6, 3, 1, 0, 5, 2, 2, 3, 1, 0, 6, 12, 7, 2, 3, 1, 0, 7, 4, 6, 6, 2, 3, 1, 0, 8, 7, 13, 5, 6, 2, 3, 1, 0, 9, 5, 12, 7, 7, 6, 2, 3, 1, 0, 10, 24, 5, 15, 4, 7, 6, 2, 3, 1, 0, 11, 8, 4, 13, 5, 5, 7, 6, 2, 3, 1, 0, 12, 11, 25, 4, 14, 12, 5, 7, 6, 2, 3, 1, 0, 13, 9, 24, 12, 15, 4, 4, 5, 7, 6, 2, 3, 1, 0, 14, 13, 9, 27, 12, 10, 13, 4, 5, 7, 6, 2, 3, 1, 0
FORMULA
For row zero: A(0,k) = k, for column zero: A(n,0) = 0, and in other cases: A(n,k) = A003188(1+ A006068(A(n-1,k-1)))
Other identities. For all n >= 0:
EXAMPLE
The top left [0 .. 16] x [0 .. 19] section of the array:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
0, 1, 3, 6, 2, 12, 4, 7, 5, 24, 8, 11, 9, 13, 15, 10, 14, 48, 16, 19
0, 1, 3, 2, 7, 6, 13, 12, 5, 4, 25, 24, 9, 8, 15, 14, 11, 10, 49, 48
0, 1, 3, 2, 6, 5, 7, 15, 13, 4, 12, 27, 25, 8, 24, 14, 10, 9, 11, 51
0, 1, 3, 2, 6, 7, 4, 5, 14, 15, 12, 13, 26, 27, 24, 25, 10, 11, 8, 9
0, 1, 3, 2, 6, 7, 5, 12, 4, 10, 14, 13, 15, 30, 26, 25, 27, 11, 9, 24
0, 1, 3, 2, 6, 7, 5, 4, 13, 12, 11, 10, 15, 14, 31, 30, 27, 26, 9, 8
0, 1, 3, 2, 6, 7, 5, 4, 12, 15, 13, 9, 11, 14, 10, 29, 31, 26, 30, 8
0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 14, 15, 8, 9, 10, 11, 28, 29, 30, 31
0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 10, 14, 24, 8, 11, 9, 20, 28, 31
0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 11, 10, 25, 24, 9, 8, 21, 20
0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 9, 11, 27, 25, 8, 24, 23
0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 8, 9, 26, 27, 24, 25
0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 24, 8, 30, 26, 25
0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 8, 25, 24, 31, 30
0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 8, 24, 27, 25, 29
0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 8, 24, 25, 26, 27
MATHEMATICA
A003188[n_]:=BitXor[n, Floor[n/2]]; A006068[n_]:=If[n<2, n, Block[{m= A006068[Floor[n/2]]}, 2m + Mod[Mod[n, 2] + Mod[m, 2], 2]]]; a[r_, 0]:= 0; a[0, c_]:=c; a[r_, c_]:= A003188[1 + A006068[a[r - 1, c - 1]]]; Table[a[c, r - c], {r, 0, 15}, {c, 0, r}] //Flatten (* Indranil Ghosh, Apr 02 2017 *)
PROG
(Scheme)
(define (A268820bi row col) (cond ((zero? row) col) ((zero? col) 0) (else ( A268717 (+ 1 (A268820bi (- row 1) (- col 1)))))))
(define (A268820bi row col) (cond ((zero? row) col) ((zero? col) 0) (else ( A003188 (+ 1 ( A006068 (A268820bi (- row 1) (- col 1))))))))
(PARI) A003188(n) = bitxor(n, n\2);
a(r, c) = if(r==0, c, if(c==0, 0, A003188(1 + A006068(a(r - 1, c - 1)))));
for(r=0, 15, for(c=0, r, print1(a(c, r - c), ", "); ); print(); ); \\ Indranil Ghosh, Apr 02 2017
(Python)
if n<2: return n
else:
return 2*m + (n%2 + m%2)%2
def a(r, c): return c if r<1 else 0 if c<1 else A003188(1 + A006068(a(r - 1, c - 1)))
for r in range(16):
print([a(c, r - c) for c in range(r + 1)]) # Indranil Ghosh, Apr 02 2017
CROSSREFS
Inverses of these permutations can be found in table A268830.
Rows converge towards A003188, which is also the main diagonal.
Cf. array A268715 (can be extracted from this one).
Cf. array A268833 (shows related Hamming distances with regular patterns).
Permutation of nonnegative integers: a(0) = 0, a(n) = A268717(1 + A268821(n-1)).
+10
10
0, 1, 3, 2, 6, 5, 7, 15, 13, 4, 12, 27, 25, 8, 24, 14, 10, 9, 11, 51, 49, 16, 48, 22, 18, 17, 19, 26, 30, 29, 31, 23, 21, 28, 20, 99, 97, 32, 96, 38, 34, 33, 35, 42, 46, 45, 47, 39, 37, 44, 36, 50, 54, 53, 55, 63, 61, 52, 60, 43, 41, 56, 40, 62, 58, 57, 59, 195, 193, 64, 192, 70, 66, 65, 67, 74, 78, 77, 79, 71, 69, 76, 68, 82, 86, 85
COMMENTS
The "third shifted power" of permutation A268717.
PROG
(PARI) A003188(n) = bitxor(n, floor(n/2));
A006068(n) = if(n<2, n, {my(m = A006068(floor(n/2))); 2*m + (n%2 + m%2)%2});
(Python)
if n<2: return n
else:
return 2*m + (n%2 + m%2)%2
Permutation of nonnegative integers: a(0) = 0, a(n) = 1 + A268824( A268718(n)-1).
+10
6
0, 1, 3, 2, 6, 7, 4, 5, 18, 19, 16, 17, 10, 11, 8, 9, 26, 27, 24, 25, 34, 35, 32, 33, 14, 15, 12, 13, 30, 31, 28, 29, 42, 43, 40, 41, 50, 51, 48, 49, 62, 63, 60, 61, 46, 47, 44, 45, 22, 23, 20, 21, 54, 55, 52, 53, 66, 67, 64, 65, 58, 59, 56, 57, 74, 75, 72, 73, 82, 83, 80, 81, 94, 95, 92, 93, 78, 79, 76, 77, 118, 119, 116, 117, 86, 87
COMMENTS
The "fourth shifted power" of permutation A268718.
Permutation of nonnegative integers: a(0) = 0, a(n) = A268717(1+ A268827(n-1)).
+10
6
0, 1, 3, 2, 6, 7, 5, 4, 13, 12, 11, 10, 15, 14, 31, 30, 27, 26, 9, 8, 25, 24, 55, 54, 51, 50, 17, 16, 49, 48, 29, 28, 21, 20, 19, 18, 23, 22, 103, 102, 99, 98, 33, 32, 97, 96, 45, 44, 37, 36, 35, 34, 39, 38, 53, 52, 61, 60, 59, 58, 63, 62, 47, 46, 43, 42, 57, 56, 41, 40, 199, 198, 195, 194, 65, 64, 193, 192, 77
COMMENTS
The sixth "shifted power" of A268717.
MATHEMATICA
A003188[n_]:=BitXor[n, Floor[n/2]]; A006068[n_]:=If[n<2, n, Block[{m = A006068[Floor[n/2]]}, 2m + Mod[Mod[n, 2] + Mod[m, 2], 2]]]; A268717[n_]:=If[n<1, 0, A003188[ 1 + A006068[n - 1]]]; A268823[n_]:= If[n<2, n, A268717[1 + A268717[1 + A268717[n - 2]]]]; A268825[n_]:=If[n<1, 0, A268717[1 + A268823[n - 1]]]; A268827[n_]:=If[n<1, 0, A268717[1 + A268825[n - 1]]]; A268831[n_]:=If[n<1, 0, A268717[1 + A268827[n - 1]]]; Table[ A268831[n], {n, 0, 100}] (* Indranil Ghosh, Apr 03 2017 *)
PROG
(PARI) A003188(n) = bitxor(n, n\2);
(Python)
if n<2: return n
else:
return 2*m + (n%2 + m%2)%2
Search completed in 0.006 seconds
|