[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a265250 -id:a265250
     Sort: relevance | references | number | modified | created      Format: long | short | data
Partitions of n with parts having at most 3 distinct magnitudes.
+10
8
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 54, 72, 91, 115, 145, 177, 215, 258, 308, 364, 424, 491, 568, 651, 742, 838, 940, 1065, 1181, 1320, 1454, 1619, 1757, 1957, 2124, 2329, 2510, 2763, 2934, 3244, 3432, 3752, 3964, 4329, 4531, 4965, 5179, 5627, 5872, 6391, 6577, 7178, 7405
OFFSET
0,3
COMMENTS
Partitions whose Ferrers diagrams do not contain the pattern 4321 under removal of rows and columns (as defined by Bloom and Saracino).
LINKS
J. Bloom and D. Saracino, Rook and Wilf equivalence of integer partitions, arXiv:1808.04238 [math.CO], 2018.
J. Bloom and D. Saracino, Rook and Wilf equivalence of integer partitions, European J. Combin., 71 (2018), 246-267.
FORMULA
G.f.: Sum_{i>=1} x^i/(1-x^i) + Sum_{j=1..i-1} x^(i+j)/((1-x^i)*(1-x^j)) + Sum_{k=1..j-1} x^(i+j+k)/((1-x^i)*(1-x^j)*(1-x^k)).
a(n) = Sum_{k=0..3} A116608(n,k). - Alois P. Heinz, Jul 11 2019
EXAMPLE
a(10) = 41 because all of the 42 integer partitions of 10 count (i.e., 10 = 10, 10 = 9+1 = 8+1+1, etc.), except the partition 10 = 4+3+2+1.
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,
`if`(t=1, `if`(irem(n, i)=0, 1, 0)+b(n, i-1, t),
add(b(n-i*j, i-1, t-`if`(j=0, 0, 1)), j=0..n/i))))
end:
a:= n-> b(n$2, 3):
seq(a(n), n=0..100); # Alois P. Heinz, Jul 11 2019
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1, 0, If[t == 1, If[Mod[n, i] == 0, 1, 0] + b[n, i - 1, t], Sum[b[n - i*j, i - 1, t - If[j == 0, 0, 1]], {j, 0, n/i}]]]];
a[n_] := b[n, n, 3];
a /@ Range[0, 100] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A265250 (partitions of n with parts having at most 2 distinct magnitudes). Sum of A002134, A002133 and A000005.
Cf. A116608.
KEYWORD
nonn
AUTHOR
Nathan McNew, Jul 09 2019
STATUS
approved
Number of partitions of n with at most five part sizes.
+10
3
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 791, 1000, 1250, 1565, 1938, 2400, 2945, 3615, 4395, 5342, 6439, 7755, 9268, 11069, 13127, 15537, 18286, 21484, 25095, 29275, 33968, 39344, 45362, 52193, 59836, 68441, 78014, 88724, 100622, 113828
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..5} A116608(n,k).
PROG
(Python)
from sympy.utilities.iterables import partitions
def A364809(n): return sum(1 for p in partitions(n) if len(p)<=5) # Chai Wah Wu, Sep 14 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 14 2023
STATUS
approved
Triangle read by rows: T(n,k) is the number of partitions of n having k parts strictly between the smallest and the largest part (n>=1, k>=0).
+10
2
1, 2, 3, 5, 7, 10, 1, 13, 2, 17, 4, 1, 20, 8, 2, 26, 11, 4, 1, 29, 17, 8, 2, 35, 24, 13, 4, 1, 39, 33, 19, 8, 2, 48, 39, 30, 13, 4, 1, 48, 56, 41, 21, 8, 2, 60, 64, 57, 32, 13, 4, 1, 61, 83, 75, 47, 21, 8, 2, 74, 94, 100, 65, 34, 13, 4, 1
OFFSET
1,2
COMMENTS
Number of entries in row n is floor((n-4)/2) (n>=4).
Sum of entries of row n = A000041(n) = number of partitions of n.
T(n,0) = A265250(n).
Sum(k*T(n,k), k>=0) = A182977(n).
FORMULA
G.f.: G(t,x) = Sum_{i>=1} x^i/(1-x^i) + Sum_{i>=1} Sum_{j>=i+1} x^(i+j)/(1-x^i)/(1-x^j)/Product_{k=i+1..j-1} (1-tx^k).
EXAMPLE
T(8,2) = 1 because among the 22 partitions of 8 only [3,2,2,1] has 2 parts strictly between the smallest and the largest part.
Triangle starts:
1;
2;
3;
5;
7;
10, 1;
13, 2;
MAPLE
g := add(x^i/(1-x^i), i=1..80)+add(add(x^(i+j)/((1-x^i)*(1-x^j)*mul(1-t*x^k, k=i+1..j-1)), j=i+1..80), i=1..80): gser := simplify(series(g, x=0, 23)): for n to 22 do P[n]:= sort(coeff(gser, x, n)) end do: for n to 22 do seq(coeff(P[n], t, k), k=0..degree(P[n])) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Dec 25 2015
STATUS
approved
Number of partitions of n with at most four part sizes.
+10
2
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 175, 229, 292, 375, 470, 591, 733, 905, 1103, 1343, 1615, 1938, 2309, 2726, 3211, 3758, 4379, 5069, 5865, 6716, 7694, 8769, 9967, 11254, 12732, 14264, 16025, 17877, 19959, 22149, 24605, 27147, 30012, 33006, 36294, 39742, 43573, 47524
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..4} A116608(n,k).
PROG
(Python)
from sympy.utilities.iterables import partitions
def A364793(n): return sum(1 for p in partitions(n) if len(p)<=4) # Chai Wah Wu, Sep 14 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 14 2023
STATUS
approved

Search completed in 0.007 seconds