[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a258285 -id:a258285
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number T(n,k) of partitions of k copies of n into distinct parts; triangle T(n,k), n>=0, 0<=k<=max(1,ceiling(n/2)), read by rows.
+10
12
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 1, 1, 5, 7, 4, 1, 1, 6, 9, 5, 1, 1, 8, 16, 13, 5, 1, 1, 10, 21, 18, 7, 1, 1, 12, 33, 37, 20, 6, 1, 1, 15, 46, 56, 31, 8, 1, 1, 18, 68, 103, 75, 29, 7, 1, 1, 22, 95, 154, 118, 47, 10, 1, 1, 27, 140, 279, 266, 134, 40, 8, 1
OFFSET
0,8
LINKS
FORMULA
T(n,k) = 1/k! * [Product_{i=1..k} x_i^n] Product_{j>0} (1+Sum_{i=1..k} x_i^j).
EXAMPLE
T(7,0) = 1: [].
T(7,1) = 5: [7], [6,1], [5,2], [4,3], [4,2,1].
T(7,2) = 7: [7;6,1], [7;5,2], [7;4,3], [7;4,2,1], [6,1;5,2], [6,1;4,3], [5,2;4,3].
T(7,3) = 4: [7;6,1;5,2], [7;6,1;4,3], [7;5,2;4,3], [6,1;5,2;4,3].
T(7,4) = 1: [7;6,1;5,2;4,3].
T(8,4) = 1: [8;7,1;6,2;5,3].
Triangle T(n,k) begins:
00 : 1, 1;
01 : 1, 1;
02 : 1, 1;
03 : 1, 2, 1;
04 : 1, 2, 1;
05 : 1, 3, 3, 1;
06 : 1, 4, 4, 1;
07 : 1, 5, 7, 4, 1;
08 : 1, 6, 9, 5, 1;
09 : 1, 8, 16, 13, 5, 1;
10 : 1, 10, 21, 18, 7, 1;
11 : 1, 12, 33, 37, 20, 6, 1;
12 : 1, 15, 46, 56, 31, 8, 1;
13 : 1, 18, 68, 103, 75, 29, 7, 1;
14 : 1, 22, 95, 154, 118, 47, 10, 1;
15 : 1, 27, 140, 279, 266, 134, 40, 8, 1;
...
MAPLE
b:= proc() option remember; local m; m:= args[nargs];
`if`(nargs=1, 1, `if`(args[1]=0, b(args[t] $t=2..nargs),
`if`(m=0 or add(args[i], i=1..nargs-1)> m*(m+1)/2, 0,
b(args[t] $t=1..nargs-1, m-1) +add(`if`(args[j]-m<0, 0,
b(sort([seq(args[i] -`if`(i=j, m, 0), i=1..nargs-1)])[]
, m-1)), j=1..nargs-1))))
end:
T:= (n, k)-> b(n$k+1)/k!:
seq(seq(T(n, k), k=0..max(1, ceil(n/2))), n=0..15);
MATHEMATICA
disParts[n_] := disParts[n] = Select[IntegerPartitions[n], Length[#] == Length[Union[#]]&];
T[n_, k_] := Select[Subsets[disParts[n], {k}], Length[Flatten[#]] == Length[Union[Flatten[#]]]&] // Length;
Table[T[n, k], {n, 0, 15}, {k, 0, Max[1, Ceiling[n/2]]}] // Flatten (* Jean-François Alcover, Feb 17 2021 *)
CROSSREFS
Row sums give 1 + A258289.
Row lengths give 1 + A065033.
T(n^2,n) gives A284824.
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, May 25 2015
STATUS
approved

Search completed in 0.004 seconds