OFFSET
1,2
COMMENTS
LINKS
Alois P. Heinz, Rows n = 1..120, flattened
EXAMPLE
1;
2;
2, 3;
3, 5;
2, 8, 7, 6;
2, 6, 11, 7;
3, 10, 5, 11, 14, 7, 12, 6;
2, 13, 14, 15, 3, 10;
5, 10, 20, 17, 11, 21, 19, 15, 7, 14;
2, 8, 3, 19, 18, 14, 27, 21, 26, 10, 11, 15;
Row 6 contains 2,6,11,7 because 13 is the 6th prime number. 2 is the least positive primitive root of 13. The integers relatively prime to 13-1=12 are {1,5,7,11}. So we have: 2^1==2, 2^5==6, 2^7==11, and 2^11==7 (mod 13).
MAPLE
with(numtheory):
T:= n-> (p-> seq(primroot(p)&^k mod p, k=select(
h-> igcd(h, p-1)=1, [$1..p-1])))(ithprime(n)):
seq(T(n), n=1..15); # Alois P. Heinz, May 03 2015
MATHEMATICA
Table[nn = p; Table[Mod[PrimitiveRoot[nn]^k, nn], {k, Select[Range[nn - 1], CoprimeQ[#, nn - 1] &]}], {p, Prime[Range[12]]}] // Grid
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, May 03 2015
STATUS
approved