[go: up one dir, main page]

login
Search: a242498 -id:a242498
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of compositions of n with equal number of even and odd parts.
+10
16
1, 0, 0, 2, 0, 4, 6, 6, 24, 28, 60, 130, 190, 432, 770, 1386, 2856, 5056, 9828, 18918, 34908, 68132, 128502, 244090, 470646, 890628, 1709136, 3271866, 6238986, 11986288, 22925630, 43932906, 84349336, 161625288, 310404768, 596009494
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=floor(n/3)..floor(n/2)} C(2*n-4*k,n-2*k)*C(n-1-k,2*n-4*k-1).
Recurrence: n*(2*n-7)*a(n) = 2*(n-2)*(2*n-5)*a(n-2) + 2*(2*n-7)*(2*n-3)*a(n-3) - (n-4)*(2*n-3)*a(n-4). - Vaclav Kotesovec, May 01 2014
a(n) ~ sqrt(c) * d^n / sqrt(Pi*n), where d = 1.94696532812840456026081823863... is the root of the equation 1-4*d-2*d^2+d^4 = 0, c = 0.225563290820392765554898545739... is the root of the equation 43*c^4-18*c^2+8*c-1=0. - Vaclav Kotesovec, May 01 2014
EXAMPLE
From Gus Wiseman, Jun 26 2022: (Start)
The a(0) = 1 through a(7) = 6 compositions (empty columns indicated by dots):
() . . (12) . (14) (1122) (16)
(21) (23) (1212) (25)
(32) (1221) (34)
(41) (2112) (43)
(2121) (52)
(2211) (61)
(End)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Count[#, _?EvenQ]==Count[#, _?OddQ]&]], {n, 0, 15}] (* Gus Wiseman, Jun 26 2022 *)
CROSSREFS
For partitions: A045931, ranked by A325698, strict A239241 (conj A352129).
Column k=0 of A242498.
Without multiplicity: A242821, for partitions A241638 (ranked by A325700).
These compositions are ranked by A355321.
A047993 counts balanced partitions, ranked by A106529.
A108950/A108949 count partitions with more odd/even parts.
A130780/A171966 count partitions with more or as many odd/even parts.
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Sep 24 2004
STATUS
approved
Number T(n,k) of compositions of n, where k is the difference between the number of odd parts and the number of even parts, both counted without multiplicity; triangle T(n,k), n>=0, read by rows.
+10
13
1, 1, 1, 0, 1, 2, 2, 2, 3, 1, 2, 11, 2, 3, 2, 2, 14, 8, 6, 6, 33, 14, 11, 5, 15, 43, 45, 20, 44, 82, 99, 25, 6, 14, 74, 141, 230, 41, 12, 202, 260, 451, 85, 26, 6, 22, 351, 514, 953, 148, 54, 24, 766, 1049, 1798, 355, 104, 18, 104, 1301, 2321, 3503, 751, 194
OFFSET
0,6
COMMENTS
T(n^2,n) = T(n^2+n,-n) = n! = A000142(n) for n>=0.
LINKS
EXAMPLE
T(8,-1) = 15: [2,2,2,2], [1,1,2,4], [1,1,4,2], [1,2,1,4], [1,2,4,1], [1,4,1,2], [1,4,2,1], [2,1,1,4], [2,1,4,1], [2,4,1,1], [4,1,1,2], [4,1,2,1], [4,2,1,1], [4,4], [8].
Triangle T(n,k) begins:
: n\k : -3 -2 -1 0 1 2 3 ...
+-----+------------------------------------
: 0 : 1;
: 1 : 1;
: 2 : 1, 0, 1;
: 3 : 2, 2;
: 4 : 2, 3, 1, 2;
: 5 : 11, 2, 3;
: 6 : 2, 2, 14, 8, 6;
: 7 : 6, 33, 14, 11;
: 8 : 5, 15, 43, 45, 20;
: 9 : 44, 82, 99, 25, 6;
: 10 : 14, 74, 141, 230, 41, 12;
: 11 : 202, 260, 451, 85, 26;
: 12 : 6, 22, 351, 514, 953, 148, 54;
: 13 : 24, 766, 1049, 1798, 355, 104;
: 14 : 18, 104, 1301, 2321, 3503, 751, 194;
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
expand(add(`if`(j=0, 1, x^(2*irem(i, 2)-1))*
b(n-i*j, i-1, p+j)/j!, j=0..n/i))))
end:
T:= n->(p->seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b(n$2, 0)):
seq(T(n), n=0..20);
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[n==0, p!, If[i<1, 0, Expand[Sum[If[j==0, 1, x^(2*Mod[i, 2]-1)]*b[n-i*j, i-1, p+j]/j!, {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, Exponent[p, x, Min], Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jan 17 2017, translated from Maple *)
CROSSREFS
Row sums give A011782.
Cf. A242498 (compositions with multiplicity), A242618 (partitions without multiplicity).
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, May 19 2014
STATUS
approved
Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 1.
+10
2
1, 0, 1, 3, 1, 9, 11, 18, 51, 65, 151, 290, 477, 1043, 1835, 3486, 6931, 12540, 24607, 46797, 87979, 171072, 323269, 619245, 1190619, 2264925, 4357211, 8343322, 15973309, 30711853, 58846191, 113027716, 217192103, 416964202, 801880039, 1541412015, 2963997227
OFFSET
1,4
COMMENTS
With offset 2 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -1.
LINKS
FORMULA
Recurrence (for n>=5): (n+2)*(16*n^4 - 128*n^3 + 344*n^2 - 352*n + 89)*a(n) = -32*(n+1)*(2*n-5)*a(n-1) + 2*(16*n^5 - 112*n^4 + 264*n^3 - 320*n^2 + 301*n - 89)*a(n-2) + 2*(2*n-5)*(16*n^4 - 80*n^3 + 80*n^2 + 36*n - 53)*a(n-3) - (n-4)*(16*n^4 - 64*n^3 + 56*n^2 + 16*n - 31)*a(n-4). - Vaclav Kotesovec, May 20 2014
MAPLE
a:= proc(n) option remember;
`if`(n<6, [0, 1, 0, 1, 3, 1][n+1],
((3*n-2)*a(n-2) +(4*n+2)*a(n-3) -(3*n-10)*a(n-4)
-(4*n-22)*a(n-5) +(n-6)*a(n-6))/(n+2))
end:
seq(a(n), n=1..50);
MATHEMATICA
a[n_] := a[n] = If[n<6, {0, 1, 0, 1, 3, 1}[[n+1]], ((3n-2)a[n-2] + (4n+2)a[n-3] - (3n-10)a[n-4] - (4n-22)a[n-5] + (n-6)a[n-6])/(n+2)];
Array[a, 50] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)
CROSSREFS
Column k=1 of A242498.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 16 2014
STATUS
approved
Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 2.
+10
2
1, 0, 2, 4, 3, 16, 19, 40, 95, 136, 321, 588, 1057, 2240, 3998, 7848, 15339, 28464, 56143, 106788, 204083, 396704, 755052, 1457456, 2806531, 5377112, 10382243, 19947252, 38382957, 73996576, 142311198, 274283168, 528438319, 1017784016, 1962451118, 3781912684
OFFSET
2,3
COMMENTS
With offset 4 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -2.
LINKS
FORMULA
Recurrence (for n>=6): (n+4)*(2*n-5)*(2*n-3)*(n^4 - 6*n^3 + 11*n^2 - 6*n - 16)*a(n) = -16*(n-3)*(n+3)*(2*n-5)*(2*n-1)*a(n-1) + 2*(n-2)*(2*n-3)*(2*n^5 - 7*n^4 + 8*n^3 - 51*n^2 + 28*n + 32)*a(n-2) + 2*(n-3)*(2*n-5)*(2*n-1)*(2*n^4 - 3*n^3 - 2*n^2 + 11*n - 24)*a(n-3) - (n-4)*(2*n-3)*(2*n-1)*(n^4 - 2*n^3 - n^2 + 2*n - 16)*a(n-4). - Vaclav Kotesovec, May 20 2014
CROSSREFS
Column k=2 of A242498.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 16 2014
STATUS
approved
Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 3.
+10
2
1, 0, 3, 5, 6, 25, 31, 75, 162, 259, 609, 1106, 2122, 4410, 8076, 16197, 31527, 59961, 118844, 227700, 441507, 860860, 1654731, 3218501, 6226818, 12027405, 23337471, 45082050, 87258876, 168935018, 326536646, 632132760, 1222716653, 2364969824, 4576680195
OFFSET
3,3
COMMENTS
With offset 6 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -3.
LINKS
FORMULA
Recurrence (for n>=7): (n-3)*(n-2)*(n-1)*(n+6)*(16*n^4 - 64*n^3 + 56*n^2 + 16*n - 1311)*a(n) = -288*(n-4)*(n-2)*n*(n+5)*(2*n-3)*a(n-1) + 2*(n-1)*(16*n^7 - 64*n^6 + 136*n^5 - 1048*n^4 + 1621*n^3 + 1202*n^2 - 9162*n + 7866)*a(n-2) + 2*(n-2)*n*(2*n-3)*(16*n^5 - 32*n^4 - 48*n^3 + 212*n^2 - 1429*n + 2145)*a(n-3) - (n-4)*(n-1)^2*n*(16*n^4 - 40*n^2 - 1287)*a(n-4). - Vaclav Kotesovec, May 20 2014
CROSSREFS
Column k=3 of A242498.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 16 2014
STATUS
approved
Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 4.
+10
2
1, 0, 4, 6, 10, 36, 48, 126, 259, 456, 1064, 1956, 3939, 8112, 15300, 31174, 60951, 118580, 236456, 458172, 900185, 1765556, 3431792, 6728410, 13107393, 25538448, 49856392, 96966572, 188914574, 367741688, 715053048, 1391512424, 2705016795, 5258241032
OFFSET
4,3
COMMENTS
With offset 8 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -4.
LINKS
FORMULA
Recurrence (for n>=8): (n-4)*(n+8)*(2*n-3)*(2*n-1)*(n^4 - 2*n^3 - n^2 + 2*n - 256)*a(n) = -64*(n-5)*(n-1)*(n+7)*(2*n-3)*(2*n+1)*a(n-1) + 2*(2*n-1)*(2*n^7 - n^6 + 14*n^5 - 199*n^4 - 288*n^3 + 600*n^2 - 5360*n + 2928)*a(n-2) + 2*(n-1)*(2*n-3)*(2*n+1)*(2*n^5 + n^4 - 9*n^3 + 28*n^2 - 508*n + 608)*a(n-3) - (n-4)*n*(2*n-1)*(2*n+1)*(n^4 + 2*n^3 - n^2 - 2*n - 256)*a(n-4). - Vaclav Kotesovec, May 20 2014
CROSSREFS
Column k=4 of A242498.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 16 2014
STATUS
approved
Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 5.
+10
2
1, 0, 5, 7, 15, 49, 71, 196, 394, 753, 1746, 3285, 6865, 14124, 27445, 56661, 111892, 222222, 446524, 876876, 1744353, 3448783, 6782633, 13411528, 26346074, 51799306, 101840098, 199601828, 391637976, 767247094, 1501758784, 2939789022, 5747749147, 11235696151
OFFSET
5,3
COMMENTS
With offset 10 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -5.
LINKS
FORMULA
Recurrence (for n>=9): (n-5)*(n-1)*n*(n+10)*(16*n^4 - 40*n^2 - 9991)*a(n) = -800*(n-6)*(n-1)*(n+1)*(n+9)*(2*n-1)*a(n-1) + 2*n*(16*n^7 + 48*n^6 + 280*n^5 - 1920*n^4 - 11691*n^3 - 5023*n^2 - 167795*n + 7975)*a(n-2) + 2*(n-1)*(n+1)*(2*n-1)*(16*n^5 + 48*n^4 - 16*n^3 + 292*n^2 - 9645*n + 7200)*a(n-3) - (n-4)*n*(n+1)^2*(16*n^4 + 64*n^3 + 56*n^2 - 16*n - 10015)*a(n-4). - Vaclav Kotesovec, May 20 2014
CROSSREFS
Column k=5 of A242498.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 16 2014
STATUS
approved
Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 6.
+10
2
1, 0, 6, 8, 21, 64, 101, 288, 576, 1180, 2727, 5280, 11363, 23496, 46981, 98176, 196482, 397644, 806351, 1606488, 3234335, 6456048, 12849330, 25637632, 50835950, 100883304, 199903578, 395067760, 781029504, 1540973568, 3037666097, 5984978112, 11775884581
OFFSET
6,3
COMMENTS
With offset 12 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -6.
LINKS
FORMULA
Recurrence (for n>=10): (n-6)*(n+12)*(2*n-1)*(2*n+1)*(n^4 + 2*n^3 - n^2 - 2*n - 1296)*a(n) = -144*(n-7)*n*(n+11)*(2*n-1)*(2*n+3)*a(n-1) + 2*(2*n+1)*(2*n^7 + 13*n^6 + 80*n^5 - 179*n^4 - 3424*n^3 - 6476*n^2 - 69072*n - 31104)*a(n-2) + 2*n*(2*n-1)*(2*n+3)*(2*n^5 + 11*n^4 + 15*n^3 + 67*n^2 - 2465*n + 642)*a(n-3) - (n-4)*(n+2)*(2*n+1)*(2*n+3)*(n^4 + 6*n^3 + 11*n^2 + 6*n - 1296)*a(n-4). - Vaclav Kotesovec, May 20 2014
CROSSREFS
Column k=6 of A242498.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 16 2014
STATUS
approved
Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 7.
+10
2
1, 0, 7, 9, 28, 81, 139, 405, 815, 1771, 4092, 8173, 18019, 37609, 77246, 163345, 331968, 683631, 1400777, 2832362, 5770056, 11640546, 23446366, 47227530, 94582628, 189487950, 378658714, 754877809, 1504215522, 2990469337, 5939101301, 11782590061, 23340439078
OFFSET
7,3
COMMENTS
With offset 14 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -7.
LINKS
FORMULA
Recurrence (for n>=11): (n-7)*n*(n+1)*(n+14)*(16*n^4 + 64*n^3 + 56*n^2 - 16*n - 38431)*a(n) = -1568*(n-8)*n*(n+2)*(n+13)*(2*n+1)*a(n-1) + 2*(n+1)*(16*n^7 + 160*n^6 + 1192*n^5 + 472*n^4 - 49083*n^3 - 168912*n^2 - 1534048*n - 1379196)*a(n-2) + 2*n*(n+2)*(2*n+1)*(16*n^5 + 128*n^4 + 336*n^3 + 1076*n^2 - 36101*n - 8729)*a(n-3) - (n-4)*(n+1)*(n+2)*(n+3)*(16*n^4 + 128*n^3 + 344*n^2 + 352*n - 38311)*a(n-4). - Vaclav Kotesovec, May 20 2014
CROSSREFS
Column k=7 of A242498.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 16 2014
STATUS
approved
Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 8.
+10
2
1, 0, 8, 10, 36, 100, 186, 550, 1122, 2564, 5940, 12246, 27560, 58240, 122642, 262458, 542243, 1134944, 2352136, 4826980, 9949352, 20300312, 41377116, 84172508, 170322099, 344527304, 694617960, 1397219682, 2807142612, 5625453196, 11258808682, 22498804286
OFFSET
8,3
COMMENTS
With offset 16 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -8.
LINKS
FORMULA
Recurrence (for n>=12): (n-8)*(n+16)*(2*n+1)*(2*n+3)*(n^4 + 6*n^3 + 11*n^2 + 6*n - 4096)*a(n) = -256*(n-9)*(n+1)*(n+15)*(2*n+1)*(2*n+5)*a(n-1) + 2*(2*n+3)*(2*n^7 + 27*n^6 + 242*n^5 + 549*n^4 - 9408*n^3 - 49916*n^2 - 462064*n - 606208)*a(n-2) + 2*(n+1)*(2*n+1)*(2*n+5)*(2*n^5 + 21*n^4 + 79*n^3 + 254*n^2 - 7608*n - 5760)*a(n-3) - (n-4)*(n+4)*(2*n+3)*(2*n+5)*(n^4 + 10*n^3 + 35*n^2 + 50*n - 4072)*a(n-4). - Vaclav Kotesovec, May 20 2014
CROSSREFS
Column k=8 of A242498.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 16 2014
STATUS
approved

Search completed in 0.010 seconds