[go: up one dir, main page]

login
Search: a242412 -id:a242412
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of 3 + 2*sqrt(2).
+10
136
5, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5, 4, 7, 0, 0, 2
OFFSET
1,1
COMMENTS
Limit_{n -> oo} b(n+1)/b(n) = 3+2*sqrt(2) for b = A155464, A155465, A155466.
Limit_{n -> oo} b(n)/b(n-1) = 3+2*sqrt(2) for b = A001652, A001653, A002315, A156156, A156157, A156158. - Klaus Brockhaus, Sep 23 2009
From Richard R. Forberg, Aug 14 2013: (Start)
Ratios b(n+1)/b(n) for all sequences of the form b(n) = 6*b(n-1) - b(n-2), for any initial values of b(0) and b(1), converge to this ratio.
Ratios b(n+1)/b(n) for all sequences of the form b(n) = 5*b(n-1) + 5*b(n-2) + b(n-3), for all b(0), b(1) and b(2) also converge to 3 + 2*sqrt(2). For example see A084158 (Pell Triangles).
Ratios of alternating values, b(n+2)/b(n), for all sequences of the form b(n) = 2*b(n-1) + b(n-2), also converge to 3 + 2*sqrt(2). These include A000129 (Pell Numbers). Also see A014176. (End)
Let ABCD be a square inscribed in a circle. When P is the midpoint of the arc AB, then the ratio (PC*PD)/(PA*PB) is equal to 3+2*sqrt(2). See the Mathematical Reflections link. - Michel Marcus, Jan 10 2017
Limit of ratios of successive terms of A001652 when n-> infinity. - Harvey P. Dale, Jun 16 2017; improved by Bernard Schott, Feb 28 2022
A quadratic integer with minimal polynomial x^2 - 6x + 1. - Charles R Greathouse IV, Jul 11 2020
Ratio between radii of the large circumscribed circle R and the small internal circle r drawn on the Sangaku tablet at Isaniwa Jinjya shrine in Ehime Prefecture (pictures in links). - Bernard Schott, Feb 25 2022
REFERENCES
Diogo Queiros-Condé and Michel Feidt, Fractal and Trans-scale Nature of Entropy, Iste Press and Elsevier, 2018, page 45.
LINKS
Mathematical Reflections, Solution to Problem J286, Issue 1, 2014, p. 5.
Bernard Schott, Sangaku at Isaniwa Jinya, The six circles.
Terakoya Suzu, Sangaku (mathematics tablet) II, Sangaku at Isaniwa Jinya shrine.
Wikipedia, Sangaku.
Bernard Ycart, Les Sangakus, Sangaku du Temple Isaniwa Jinya (in French).
FORMULA
Equals 1 + A090488 = 3 + A010466. - R. J. Mathar, Feb 19 2009
Equals exp(arccosh(3)), since arccosh(x) = log(x+sqrt(x^2-1)). - Stanislav Sykora, Nov 01 2013
Equals (1+sqrt(2))^2, that is, A014176^2. - Michel Marcus, May 08 2016
The periodic continued fraction is [5; [1, 4]]. - Stefano Spezia, Mar 17 2024
EXAMPLE
3 + 2*sqrt(2) = 5.828427124746190097603377448...
MATHEMATICA
RealDigits[N[3+2*Sqrt[2], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2011 *)
PROG
(PARI) 3+sqrt(8) \\ Charles R Greathouse IV, Jun 10 2011
(Magma) SetDefaultRealField(RealField(100)); 3 + 2*Sqrt(2); // G. C. Greubel, Aug 21 2018
CROSSREFS
Cf. A002193 (sqrt(2)), A090488, A010466, A014176.
Cf. A104178 (decimal expansion of log_10(3+2*sqrt(2))).
Cf. A242412 (sangaku).
KEYWORD
cons,easy,nonn
AUTHOR
Klaus Brockhaus, Feb 02 2009
STATUS
approved
a(n) = 2*n^2 - 2*n + 17.
+10
5
17, 21, 29, 41, 57, 77, 101, 129, 161, 197, 237, 281, 329, 381, 437, 497, 561, 629, 701, 777, 857, 941, 1029, 1121, 1217, 1317, 1421, 1529, 1641, 1757, 1877, 2001, 2129, 2261, 2397, 2537, 2681, 2829, 2981, 3137, 3297, 3461, 3629, 3801, 3977, 4157, 4341, 4529
OFFSET
1,1
COMMENTS
a(n) is the curvature of the n-th touching circle in the area below the counterclockwise Pappus chain and the left semicircle of the arbelos with radii r0 = 2/3, r1 = 1/3. See illustration in the links.
LINKS
Eric Weisstein's World of Mathematics, Descartes Circle theorem.
Eric Weisstein's World of Mathematics, Pappus chain.
Wikipedia, Descartes' Theorem.
FORMULA
a(n) = 2*n^2 - 2*n + 17.
Descartes three circle theorem: a(n) = 3/2 + c(n) + c(n-1) + 2*sqrt(3*(c(n)+c(n-1))/2 + c(n)*c(n-1)), with c(n) = A114949(n)/2 = (n^2 + 6)/2, producing 2*n^2 - 2*n + 17. - Wolfdieter Lang, Jun 30 2015
From Colin Barker, Jul 01 2015: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -x*(17*x^2 - 30*x + 17)/(x-1)^3. (End)
E.g.f.: exp(x)*(2*x^2 + 17) - 17. - Elmo R. Oliveira, Nov 17 2024
MATHEMATICA
Table[2*n^2 - 2*n + 17, {n, 50}] (* Wesley Ivan Hurt, Feb 04 2017 *)
LinearRecurrence[{3, -3, 1}, {17, 21, 29}, 50] (* Harvey P. Dale, Apr 28 2017 *)
PROG
(PARI) a(n)=2*n^2-2*n+17
for (n=1, 100, print1(a(n), ", "))
(PARI) Vec(-x*(17*x^2-30*x+17)/(x-1)^3 + O(x^100)) \\ Colin Barker, Jul 01 2015
CROSSREFS
Cf. A114949, A242412 (for r0 = 1/2 = r1).
KEYWORD
nonn,easy,changed
AUTHOR
Kival Ngaokrajang, Jun 30 2015
EXTENSIONS
Edited by Wolfdieter Lang, Jun 30 2015
STATUS
approved

Search completed in 0.008 seconds