[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a246512 -id:a246512
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = (2/n^3)*( Sum_{k=0..n-1} (-1)^k*(3*k^2+3*k+1)*binomial(n-1,k)^3*binomial(n+k,k)^3 ).
+10
6
2, -47, 1142, 3793, -4094806, 371557891, -13021558306, -1374157073639, 281067953420114, -22220280272696387, -51611579093593498, 257837341935815261683, -35155217354672369625958, 1761633462267526777842223, 202464167122130621896038062
OFFSET
1,1
COMMENTS
Conjecture: Let n be any positive integer. For m = 0, 2, 4, ..., we have Sum_{k=0..n-1} (3k^2+3k+1)*(binomial(n-1,k)*binomial(n+k,k))^m == 0 (mod n^3); for m = 1, 3, 5, ... we have 2*Sum_{k=0..n-1} (-1)^k*(3k^2+3k+1)*(binomial(n-1,k)*binomial(n+k,k))^m == 0 (mod n^3).
The Zeilberger algorithm could yield a complicated fifth-order recurrence for a(n).
The author proved the conjecture in the latest version of arXiv:1408.5381. - Zhi-Wei Sun, Sep 14 2014
LINKS
Zhi-Wei Sun, Two new kinds of numbers and related divisibility results, arXiv:1408.5381 [math.NT], 2014-2018.
EXAMPLE
a(2) = -47 since (2/2^3)*( Sum_{k=0..1} (-1)^k*(3k^2+3k+1)*binomial(1,k)^3*binomial(2+k,k)^3 ) = (1/4)*(1-7*3^3) = -47.
MATHEMATICA
a[n_] := Sum[(3 k^2 + 3 k + 1) (-1)^k (Binomial[n - 1, k] Binomial[n + k, k])^3, {k, 0, n - 1}] 2/n^3
Table[a[n], {n, 1, 14}]
CROSSREFS
KEYWORD
sign
AUTHOR
Zhi-Wei Sun, Aug 29 2014
STATUS
approved

Search completed in 0.003 seconds