[go: up one dir, main page]

login
Search: a245826 -id:a245826
     Sort: relevance | references | number | modified | created      Format: long | short | data
Szeged index of the grid graph P_n X P_n.
+10
4
0, 16, 216, 1280, 5000, 15120, 38416, 86016, 174960, 330000, 585640, 988416, 1599416, 2497040, 3780000, 5570560, 8018016, 11302416, 15638520, 21280000, 28523880, 37715216, 49252016, 63590400, 81250000, 102819600, 128963016, 160425216, 198038680, 242730000, 295526720, 357564416, 430094016, 514489360
OFFSET
1,2
LINKS
S. Klavzar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett., Vol. 9, No. 5 (1996), pp. 45-49.
FORMULA
a(n) = (1/3)*n^4*(n^2 - 1).
G.f.: 8*x^2*(1+x)*(2+11*x+2*x^2)/(1-x)^7.
a(n) = A245826(n,n).
a(n) = 4 * A208954(n).
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=2} 1/a(n) = 33/4 - Pi^2/2 - Pi^4/30.
Sum_{n>=2} (-1)^n/a(n) = 7*Pi^4/240 + Pi^2/4 - 21/4. (End)
MAPLE
a := proc (n) options operator, arrow: (1/3)*n^4*(n^2-1) end proc: seq(a(n), n = 1 .. 40);
MATHEMATICA
CoefficientList[Series[8 x (1 + x) (2 + 11 x + 2 x^2)/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2014 *)
Table[(n^4 (n^2-1))/3, {n, 40}] (* Harvey P. Dale, Mar 25 2021 *)
PROG
(Magma) [n^4*(n^2-1)/3: n in [1..40]]; // Vincenzo Librandi, Aug 07 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 06 2014
STATUS
approved
Triangle read by rows: T(n,k) is the Wiener index of a k X n grid (i.e., P_k X P_n, where P_m is the path graph on m vertices; 1 <= k <= n).
+10
3
0, 1, 8, 4, 25, 72, 10, 56, 154, 320, 20, 105, 280, 570, 1000, 35, 176, 459, 920, 1595, 2520, 56, 273, 700, 1386, 2380, 3731, 5488, 84, 400, 1012, 1984, 3380, 5264, 7700, 10752, 120, 561, 1404, 2730, 4620, 7155, 10416, 14484, 19440
OFFSET
1,3
COMMENTS
The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.
This is the lower triangular half of a symmetric square array.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150).
A. Graovac and T. Pisanski, On the Wiener index of a graph, J. Math. Chem., 8 (1991), 53-62.
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
Eric Weisstein's World of Mathematics, Grid Graph
Eric Weisstein's World of Mathematics, Wiener Index
FORMULA
T(n,k) = k*n*(n+k)*(k*n-1)/6 (k, n >= 1).
EXAMPLE
Presentation as symmetric square array starts:
======================================================
n\k| 1 2 3 4 5 6 7 8 9
---|--------------------------------------------------
1 | 0 1 4 10 20 35 56 84 120 ...
2 | 1 8 25 56 105 176 273 400 561 ...
3 | 4 25 72 154 280 459 700 1012 1404 ...
4 | 10 56 154 320 570 920 1386 1984 2730 ...
5 | 20 105 280 570 1000 1595 2380 3380 4620 ...
6 | 35 176 459 920 1595 2520 3731 5264 7155 ...
7 | 56 273 700 1386 2380 3731 5488 7700 10416 ...
8 | 84 400 1012 1984 3380 5264 7700 10752 14484 ...
9 | 120 561 1404 2730 4620 7155 10416 14484 19440 ...
... - Andrew Howroyd, May 27 2017
T(2,2)=8 because in a square we have four distances equal to 1 and two distances equal to 2.
T(2,1)=1 because on the path graph on two vertices there is one distance equal to 1.
T(3,2)=25 because on the P(2) X P(3) graph there are 7 distances equal to 1, 6 distances equal to 2 and 2 distances equal to 3, with 7*1 + 6*2 + 2*3 = 25.
Triangle starts: 0; 1,8; 4,25,72; 10,56,154,320;
MAPLE
T:=proc(n, k) options operator, arrow: (1/6)*k*n*(n+k)*(k*n-1) end proc: for n to 9 do seq(T(n, k), k=1..n) end do; # yields sequence in triangular form
MATHEMATICA
Table[k n (n + k) (k n - 1)/6, {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, May 28 2017 *)
PROG
(PARI)
T(n, k)=k*n*(n+k)*(k*n-1)/6;
for (n=1, 8, for(k=1, 8, print1(T(n, k), ", ")); print) \\ Andrew Howroyd, May 27 2017
CROSSREFS
Cf. A180569 (row 3), A131423 (row 2).
Main diagonal is A143945.
Cf. A245826.
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Sep 05 2008
STATUS
approved
Szeged index of the grid graph P_3 X P_n.
+10
3
4, 59, 216, 526, 1040, 1809, 2884, 4316, 6156, 8455, 11264, 14634, 18616, 23261, 28620, 34744, 41684, 49491, 58216, 67910, 78624, 90409, 103316, 117396, 132700, 149279, 167184, 186466, 207176, 229365, 253084, 278384, 305316, 333931, 364280, 396414, 430384, 466241, 504036, 543820
OFFSET
1,1
LINKS
S. Klavzar, A. Rajapakse, I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett., 9, 1996, 45-49.
FORMULA
a(n) = (1/2)*n*(17*n^2 - 9).
a(n) = A245826(n, 3).
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). G.f.: x*(4*x^2+43*x+4) / (x-1)^4. - Colin Barker, Aug 07 2014
MAPLE
a := proc (n) options operator, arrow: (1/2)*n*(17*n^2-9) end proc: seq(a(n), n = 1 .. 40);
MATHEMATICA
CoefficientList[Series[(4 x^2 + 43 x + 4)/(x - 1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2014 *)
LinearRecurrence[{4, -6, 4, -1}, {4, 59, 216, 526}, 40] (* Harvey P. Dale, Oct 21 2017 *)
PROG
(PARI) Vec(x*(4*x^2+43*x+4)/(x-1)^4 + O(x^100)) \\ Colin Barker, Aug 07 2014
(Magma) [(1/2)*n*(17*n^2 - 9): n in [1..40]]; // Vincenzo Librandi, Aug 07 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 06 2014
STATUS
approved
(2n^7 + 4n^6 - n^5 - 4n^4 - n^3) / 24.
+10
2
0, 0, 17, 279, 1960, 8875, 30555, 87122, 216384, 483570, 994125, 1909985, 3469752, 6013189, 10010455, 16096500, 25111040, 38144532, 56590569, 82205115, 117173000, 164182095, 226505587, 308092774, 413668800, 548843750, 720231525, 935578917, 1203905304
OFFSET
0,3
COMMENTS
For n > 0: sum of n-th row of triangle A245826.
LINKS
FORMULA
a(n) = n^3*(2*n^3 + 2*n^2 - 3*n - 1)*(n + 1)/24 = n^3*(n - 1)*(n + 1)*(2*n^2 + 4*n + 1)/24.
G.f.: x^2*(x^4 + 55*x^3 + 204*x^2 + 143*x + 17) / (x - 1)^8. - Colin Barker, Aug 08 2014
MAPLE
A245940:=n->(2*n^7 + 4*n^6 - n^5 - 4*n^4 - n^3) / 24: seq(A245940(n), n=0..30); # Wesley Ivan Hurt, Aug 09 2014
MATHEMATICA
Table[(2 n^7 + 4 n^6 - n^5 - 4 n^4 - n^3)/24, {n, 0, 30}] (* Vincenzo Librandi, Aug 09 2014 *)
LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 17, 279, 1960, 8875, 30555, 87122}, 30] (* Harvey P. Dale, Apr 19 2018 *)
PROG
(Haskell)
a245940 n = n^3 * (2 * n^3 + 2 * n^2 - 3 * n - 1) * (n + 1) `div` 24
(PARI)
concat([0, 0], Vec(x^2*(x^4+55*x^3+204*x^2+143*x+17)/(x-1)^8 + O(x^100))) \\ Colin Barker, Aug 08 2014
(Magma) [(2*n^7 + 4*n^6 - n^5 - 4*n^4 - n^3) / 24: n in [0..30]] // Vincenzo Librandi, Aug 09 2014
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Aug 07 2014
STATUS
approved
(16n^6 - 24n^5 + 2n^4 + 11n^3 - 6n^2 + n) / 6.
+10
2
0, 0, 59, 1040, 7014, 29580, 94105, 247884, 570220, 1184424, 2271735, 4087160, 6977234, 11399700, 17945109, 27360340, 40574040, 58723984, 83186355, 115606944, 157934270, 212454620, 281829009, 369132060, 477892804, 612137400, 776433775, 975938184, 1216443690
OFFSET
0,3
COMMENTS
For n > 0: a(n) = A245826(2*n-1,n), central terms of triangle A245826.
LINKS
FORMULA
G.f.: -x^2*(4*x^4+257*x^3+973*x^2+627*x+59) / (x-1)^7. - Colin Barker, Aug 08 2014
a(n) = (n-1)*n*(2*n-1)*(8*n^3-3*n+1)/6. [Bruno Berselli, Aug 08 2014]
a(0)=0, a(1)=0, a(2)=59, a(3)=1040, a(4)=7014, a(5)=29580, a(6)=94105, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Harvey P. Dale, Apr 13 2015
MAPLE
A245941:=n->(16*n^6-24*n^5+2*n^4+11*n^3-6*n^2+n)/6: seq(A245941(n), n=0..30); # Wesley Ivan Hurt, Aug 09 2014
MATHEMATICA
Table[(16 n^6 - 24 n^5 + 2 n^4 + 11 n^3 - 6 n^2 + n)/6, {n, 0, 30}] (* Vincenzo Librandi, Aug 09 2014 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 59, 1040, 7014, 29580, 94105}, 30] (* Harvey P. Dale, Apr 13 2015 *)
PROG
(Haskell)
a245941 n = n * (16*n^5 - 24*n^4 + 2*n^3 + 11*n^2 - 6*n + 1) `div` 6
(PARI)
concat([0, 0], Vec(-x^2*(4*x^4+257*x^3+973*x^2+627*x+59)/(x-1)^7 + O(x^100))) \\ Colin Barker, Aug 08 2014
(Magma) [(16*n^6-24*n^5+2*n^4+11*n^3-6*n^2+n)/6: n in [0..30]] // Vincenzo Librandi, Aug 09 2014
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Aug 07 2014
STATUS
approved

Search completed in 0.007 seconds