[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a245718 -id:a245718
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of partitions of n into two relatively prime parts. After initial term, this is the "half-totient" function phi(n)/2 (A000010(n)/2).
(Formerly N0058)
+10
81
1, 1, 1, 2, 1, 3, 2, 3, 2, 5, 2, 6, 3, 4, 4, 8, 3, 9, 4, 6, 5, 11, 4, 10, 6, 9, 6, 14, 4, 15, 8, 10, 8, 12, 6, 18, 9, 12, 8, 20, 6, 21, 10, 12, 11, 23, 8, 21, 10, 16, 12, 26, 9, 20, 12, 18, 14, 29, 8, 30, 15, 18, 16, 24, 10, 33, 16, 22, 12, 35, 12, 36, 18, 20, 18, 30, 12, 39, 16, 27, 20, 41, 12
OFFSET
2,4
COMMENTS
The number of distinct linear fractional transformations of order n. Also the half-totient function can be used to construct a tree containing all the integers. On the zeroth rank we have just the integers 1 and 2: immediate "ancestors" of 1 and 2 are (1: 3,4,6 2: 5,8,10,12) etc. - Benoit Cloitre, Jun 03 2002
Moebius transform of floor(n/2). - Paul Barry, Mar 20 2005
Also number of different kinds of regular n-gons, one convex, the others self-intersecting. - Reinhard Zumkeller, Aug 20 2005
From Artur Jasinski, Oct 28 2008: (Start)
Degrees of minimal polynomials of cos(2*Pi/n). The first few are
1: x - 1
2: x + 1
3: 2*x + 1
4: x
5: 4*x^2 + 2*x - 1
6: 2*x - 1
7: 8*x^3 + 4*x^2 - 4*x - 1
8: 2*x^2 - 1
9: 8*x^3 - 6*x + 1
10: 4*x^2 - 2*x - 1
11: 32*x^5 + 16*x^4 - 32*x^3 - 12*x^2 + 6*x + 1
These polynomials have solvable Galois groups, so their roots can be expressed by radicals. (End)
a(n) is the number of rationals p/q in the interval [0,1] such that p + q = n. - Geoffrey Critzer, Oct 10 2011
It appears that, for n > 2, a(n) = A023896(n)/n. Also, it appears that a record occurs at n > 2 in this sequence if and only if n is a prime. For example, records occur at n=5, 7, 11, 13, 17, ..., all of which are prime. - John W. Layman, Mar 26 2012
From Wolfdieter Lang, Dec 19 2013: (Start)
a(n) is the degree of the algebraic number of s(n)^2 = (2*sin(Pi/n))^2, starting at a(1)=1. s(n) = 2*sin(Pi/n) is the length ratio side/R for a regular n-gon inscribed in a circle of radius R (in some length units). For the coefficient table of the minimal polynomials of s(n)^2 see A232633.
Because for even n, s(n)^2 lives in the algebraic number field Q(rho(n/2)), with rho(k) = 2*cos(Pi/k), the degree is a(2*l) = A055034(l). For odd n, s(n)^2 is an integer in Q(rho(n)), and the degree is a(2*l+1) = A055034(2*l+1) = phi(2*l+1)/2, l >= 1, with Euler's totient phi=A000010 and a(1)=1. See also A232631-A232633.
(End)
Also for n > 2: number of fractions A182972(k)/A182973(k) such that A182972(k) + A182973(k) = n, A182972(n) and A182973(n) provide an enumeration of positive rationals < 1 arranged by increasing sum of numerator and denominator then by increasing numerator. - Reinhard Zumkeller, Jul 30 2014
Number of distinct rectangles with relatively prime length and width such that L + W = n, W <= L. For a(17)=8; the rectangles are 1 X 16, 2 X 15, 3 X 14, 4 X 13, 5 X 12, 6 X 11, 7 X 10, 8 X 9. - Wesley Ivan Hurt, Nov 12 2017
After including a(1) = 1, the number of elements of any reduced residue system mod* n used by Brändli and Beyne is a(n). See the examples below. - Wolfdieter Lang, Apr 22 2020
a(n) is the number of ABC triples with n = c. - Felix Huber, Oct 12 2023
REFERENCES
G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Eight, Chap. 1, Sect. 6, Problems 60&61.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
LINKS
Gerold Brändli and Tim Beyne, Modified Congruence Modulo n with Half the Amount of Residues, arXiv:1504.02757 [math.NT], 2016.
Tianxin Cai, Zhongyan Shen, and Mengjun Hu, On the Parity of the Generalized Euler Function, Advances in Mathematics (China), 2013, 42(4): 505-510.
Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seqs., Vol. 6, 2003.
Sameen Ahmed Khan, Trigonometric Ratios Using Algebraic Methods, Mathematics and Statistics (2021) Vol. 9, No. 6, 899-907.
Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020.
Jorma K. Merikoski, Pentti Haukkanen, and Timo Tossavainen, The congruence x^n = -a^n (mod m): Solvability and related OEIS sequences, Notes. Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 516-529. See p. 518.
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
Pinthira Tangsupphathawat, Takao Komatsu, and Vichian Laohakosol, Minimal Polynomials of Algebraic Cosine Values, II, J. Int. Seq., Vol. 21 (2018), Article 18.9.5.
Eric Weisstein's World of Mathematics, Polygon Triangle Picking
Eric Weisstein's World of Mathematics, Trigonometry Angles
Canze Zhu and Qunying Liao, A recursion formula for the generalized Euler function phi_e(n), arXiv:2105.10870 [math.NT], 2021.
FORMULA
a(n) = phi(n)/2 for n >= 3.
a(n) = (1/n)*Sum_{k=1..n-1, gcd(n, k)=1} k = A023896(n)/n for n>2. - Reinhard Zumkeller, Aug 20 2005
G.f.: x*(x - 1)/2 + (1/2)*Sum_{k>=1} mu(k)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Apr 13 2017
a(n) = Sum_{d|n} moebius(n/d)*floor(d/2). - Michel Marcus, May 25 2021
EXAMPLE
a(15)=4 because there are 4 partitions of 15 into two parts that are relatively prime: 14 + 1, 13 + 2, 11 + 4, 8 + 7. - Geoffrey Critzer, Jan 25 2015
The smallest nonnegative reduced residue system mod*(n) for n = 1 is {0}, hence a(1) = 1; for n = 9 it is {1, 2, 4}, because 5 == 4 (mod* 9) since -5 == 4 (mod 9), 7 == 2 (mod* 9) and 8 == 1 (mod* 9). Hence a(9) = phi(9)/2 = 3. See the comment on Brändli and Beyne above. - Wolfdieter Lang, Apr 22 2020
MAPLE
A023022 := proc(n)
if n =2 then
1;
else
numtheory[phi](n)/2 ;
end if;
end proc:
seq(A023022(n), n=2..60) ; # R. J. Mathar, Sep 19 2017
MATHEMATICA
Join[{1}, Table[EulerPhi[n]/2, {n, 3, 100}]] (* adapted by Vincenzo Librandi, Aug 19 2018 *)
PROG
(PARI) a(n)=if(n<=2, 1, eulerphi(n)/2);
/* for printing minimal polynomials of cos(2*Pi/n) */
default(realprecision, 110);
for(n=1, 33, print(n, ": ", algdep(cos(2*Pi/n), a(n))));
(Haskell)
a023022 n = length [(u, v) | u <- [1 .. div n 2],
let v = n - u, gcd u v == 1]
-- Reinhard Zumkeller, Jul 30 2014
(Python)
from sympy.ntheory import totient
def a(n): return 1 if n<3 else totient(n)/2 # Indranil Ghosh, Mar 30 2017
(Magma) [1] cat [EulerPhi(n)/ 2: n in [3..100]]; // Vincenzo Librandi, Aug 19 2018
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane. This was in the 1973 "Handbook", but then was dropped from the database. Resubmitted by David W. Wilson.
EXTENSIONS
Entry revised by N. J. A. Sloane, Jun 10 2012
Polynomials edited with the consent of Artur Jasinski by Wolfdieter Lang, Jan 08 2011
Name clarified by Geoffrey Critzer, Jan 25 2015
STATUS
approved
Numerators of positive rationals < 1 arranged by increasing sum of numerator and denominator then by increasing numerator.
+10
15
1, 1, 1, 2, 1, 1, 2, 3, 1, 3, 1, 2, 4, 1, 3, 1, 2, 3, 4, 5, 1, 5, 1, 2, 3, 4, 5, 6, 1, 3, 5, 1, 2, 4, 7, 1, 3, 5, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 5, 7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 3, 7, 9, 1, 2, 4, 5, 8, 10, 1, 3, 5, 7, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 5, 7, 11, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 1, 3, 5, 7, 9, 11
OFFSET
1,4
COMMENTS
A023022(n) and A245677(n) give number and numerator of sum of fractions a(k)/A182973(k) such that a(k) + A182973(k) = n. - Reinhard Zumkeller, Jul 30 2014
REFERENCES
S. Cook, Problem 511: An Enumeration Problem, Journal of Recreational Mathematics, Vol. 9:2 (1976-77), 137. Solution by the Problem Editor, JRM, Vol. 10:2 (1977-78), 122-123.
R. K. Guy, Unsolved Problems in Number Theory (UPINT), Section D11.
LINKS
Paul Yiu, Recreational Mathematics, 24.3.1 Appendix: Two enumerations of the rational numbers in (0,1), page 633.
EXAMPLE
Positive fractions < 1 listed by increasing sum of numerator and denominator, and by increasing numerator for equal sums:
1/2
1/3
1/4 2/3
1/5
1/6 2/5 3/4
1/7 3/5
1/8 2/7 4/5
1/9 3/7
1/10 2/9 3/8 4/7 5/6
1/11 5/7
1/12 2/11 3/10 4/9 5/8 6/7
1/13 3/11 5/9
1/14 2/13 4/11 7/8
1/15 3/13 5/11 7/9
1/16 2/15 3/14 4/13 5/12 6/11 7/10 8/9
1/17 5/13 7/11
1/18 2/17 3/16 4/15 5/14 6/13 7/12 8/11 9/10
1/19 3/17 7/13 9/11
(this is A182972/A182973).
MAPLE
t1:=[];
for n from 2 to 40 do
t1:=[op(t1), 1/(n-1)];
for i from 2 to floor((n-1)/2) do
if gcd(i, n-i)=1 then t1:=[op(t1), i/(n-i)]; fi; od:
od:
t1;
MATHEMATICA
t1={}; For[n=2, n <= 40, n++, AppendTo[t1, 1/(n-1)]; For[i=2, i <= Floor[(n-1)/2], i++, If[GCD[i, n-i] == 1, AppendTo[t1, i/(n-i)]]]]; t1 // Numerator // Rest (* Jean-François Alcover, Jan 20 2015, translated from Maple *)
PROG
(Pascal) program a182972;
var
num, den, n: longint;
function gcd(i, j: longint):longint;
begin
repeat
if i>j then i:=i mod j else j:=j mod i;
until (i=0) or (j=0);
if i=0 then gcd:=j else gcd:=i;
end;
begin
num:=1; den:=1; n:=0;
repeat
repeat
inc(num); dec(den);
if num>=den then
begin
inc(den, num); num:=1;
end;
until gcd(num, den)=1;
inc(n); writeln(n, ' ', num);
until n=100000;
end.
(Haskell)
a182972 n = a182972_list !! (n-1)
a182972_list = map fst $ concatMap q [3..] where
q x = [(num, den) | num <- [1 .. div x 2],
let den = x - num, gcd num den == 1]
-- Reinhard Zumkeller, Jul 29 2014
(Python)
from itertools import count, islice
from math import gcd
def A182972_gen(): # generator of terms
return (i for n in count(2) for i in range(1, 1+(n-1>>1)) if gcd(i, n-i)==1)
A182972_list = list(islice(A182972_gen(), 10)) # Chai Wah Wu, Aug 28 2023
CROSSREFS
Cf. A182973 (denominators), A366191 (interleaved).
Essentially the same as A333856.
KEYWORD
nonn,easy,frac,nice
AUTHOR
EXTENSIONS
Corrected by William Rex Marshall, Aug 12 2013
STATUS
approved
Denominators of positive rationals < 1 arranged by increasing sum of numerator and denominator then by increasing numerator.
+10
13
2, 3, 4, 3, 5, 6, 5, 4, 7, 5, 8, 7, 5, 9, 7, 10, 9, 8, 7, 6, 11, 7, 12, 11, 10, 9, 8, 7, 13, 11, 9, 14, 13, 11, 8, 15, 13, 11, 9, 16, 15, 14, 13, 12, 11, 10, 9, 17, 13, 11, 18, 17, 16, 15, 14, 13, 12, 11, 10, 19, 17, 13, 11, 20, 19, 17, 16, 13, 11, 21, 19, 17, 15, 13, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12
OFFSET
1,1
COMMENTS
A023022(n) and A245678(n) give number and denominator of sum of fractions A182972(k)/a(k) such that A182972(k) + a(k) = n. - Reinhard Zumkeller, Jul 30 2014
REFERENCES
S. Cook, Problem 511: An Enumeration Problem, Journal of Recreational Mathematics, Vol. 9:2 (1976-77), 137. Solution by the Problem Editor, JRM, Vol. 10:2 (1977-78), 122-123.
R. K. Guy, Unsolved Problems in Number Theory (UPINT), Section D11.
LINKS
Paul Yiu, Recreational Mathematics, 24.3.1 Appendix: Two enumerations of the rational numbers in (0,1), page 633.
EXAMPLE
Positive fractions < 1 listed by increasing sum of numerator and denominator, and by increasing numerator for equal sums:
1/2, 1/3, 1/4, 2/3, 1/5, 1/6, 2/5, 3/4, 1/7, 3/5, 1/8, 2/7, 4/5, 1/9, 3/7, ...
(this is A182972/A182973).
MATHEMATICA
A182973list[s_] := Table[If[CoprimeQ[num, s-num], s-num, Nothing], {num, Floor[s/2]}]; Flatten[Array[A182973list, 25, 3]] (* Paolo Xausa, Feb 27 2024 *)
PROG
(Pascal) program a182973;
var
num, den, n: longint;
function gcd(i, j: longint):longint;
begin
repeat
if i>j then i:=i mod j else j:=j mod i;
until (i=0) or (j=0);
if i=0 then gcd:=j else gcd:=i;
end;
begin
num:=1; den:=1; n:=0;
repeat
repeat
inc(num); dec(den);
if num>=den then
begin
inc(den, num); num:=1;
end;
until gcd(num, den)=1;
inc(n); writeln(n, ' ', den);
until n=100000;
end.
(Haskell)
a182973 n = a182973_list !! (n-1)
a182973_list = map snd $ concatMap q [3..] where
q x = [(num, den) | num <- [1 .. div x 2],
let den = x - num, gcd num den == 1]
-- Reinhard Zumkeller, Jul 29 2014
(Python)
from itertools import count, islice
from math import gcd
def A182973_gen(): # generator of terms
return (n-i for n in count(2) for i in range(1, 1+(n-1>>1)) if gcd(i, n-i)==1)
A182973_list = list(islice(A182973_gen(), 10)) # Chai Wah Wu, Aug 28 2023
CROSSREFS
Cf. A182972 (numerators), A366191 (interleaved).
KEYWORD
nonn,easy,frac,nice
AUTHOR
STATUS
approved
Numerator of sum of fractions A182972(k) / A182973(k) such that A182972(k) + A182973(k) = n.
+10
5
1, 1, 11, 1, 79, 26, 339, 34, 5297, 62, 69071, 1165, 11723, 9844, 471181, 2625, 8960447, 73244, 8231001, 243757, 1031626241, 151100, 4178462515, 2651758, 10396147563, 11843614, 64166447971, 362476, 1989542332021, 97275764008, 1830230212061, 57286319768
OFFSET
3,3
COMMENTS
A182972(n) and A182973(n) provide an enumeration of positive rationals < 1 arranged by increasing sum of numerator and denominator then by increasing numerator;
a(n) = numerator(sum(A182972(k)/A182973(k): k such that A182972(k)+A182973(k)=n));
A245718(n) = floor(a(n)/A245678(n)).
LINKS
Paul Yiu, Recreational Mathematics, 24.3.1 Appendix: Two enumerations of the rational numbers in (0,1), page 633.
EXAMPLE
. | (num, den) = (A182973, A182973) | num(sum)| den(sum)| [sum]
. n | num/den, num + den = n | A245677 | A245678 | A245718
. ----+----------------------------------+---------+---------+--------
. 3 | 1/2 | 1 | 2 | 0
. 4 | 1/3 | 1 | 3 | 0
. 5 | 1/4, 2/3 | 11 | 12 | 0
. 6 | 1/5 | 1 | 5 | 0
. 7 | 1/6, 2/5, 3/4 | 79 | 60 | 1
. 8 | 1/7, 3/5 | 26 | 35 | 0
. 9 | 1/8, 2/7, 4/5 | 339 | 280 | 1
. 10 | 1/9, 3/7 | 34 | 63 | 0
. 11 | 1/10, 2/9, 3/8, 4/7, 5/6 | 5297 | 2520 | 2
. 12 | 1/11, 5/7 | 62 | 77 | 0
. 13 | 1/12, 2/11, 3/10, 4/9, 5/8, 6/7 | 69071 | 27720 | 2
. 14 | 1/13, 3/11, 5/9 | 1165 | 1287 | 0
. 15 | 1/14, 2/13, 4/11, 7/8 | 11723 | 8008 | 1
. 16 | 1/15, 3/13, 5/11, 7/9 | 9844 | 6435 | 1 .
PROG
(Haskell)
import Data.Ratio ((%), numerator)
a245677 n = numerator $ sum
[num % den | num <- [1 .. div n 2], let den = n - num, gcd num den == 1]
CROSSREFS
Cf. A245678 (denominator), A182972, A182973, A245718.
KEYWORD
nonn,frac
AUTHOR
Reinhard Zumkeller, Jul 30 2014
STATUS
approved
Denominator of sum of fractions A182972(k) / A182973(k) such that A182972(k) + A182973(k) = n.
+10
5
2, 3, 12, 5, 60, 35, 280, 63, 2520, 77, 27720, 1287, 8008, 6435, 144144, 2431, 2450448, 46189, 3695120, 146965, 232792560, 96577, 1070845776, 1300075, 2974571600, 5014575, 11473347600, 215441, 332727080400, 31556720475, 486207248800, 20419054425
OFFSET
3,1
COMMENTS
A182972(n) and A182973(n) provide an enumeration of positive rationals < 1 arranged by increasing sum of numerator and denominator then by increasing numerator;
a(n) = denominator(sum(A182972(k)/A182973(k): k such that A182972(k)+A182973(k)=n));
A245718(n) = floor(A245677(n)/a(n)).
LINKS
Paul Yiu, Recreational Mathematics, 24.3.1 Appendix: Two enumerations of the rational numbers in (0,1), page 633.
EXAMPLE
See A245677.
PROG
(Haskell)
import Data.Ratio ((%), denominator)
a245678 n = denominator $ sum
[num % den | num <- [1 .. div n 2], let den = n - num, gcd num den == 1]
CROSSREFS
Cf. A245677 (numerator), A182972, A182973, A245718.
KEYWORD
nonn,frac
AUTHOR
Reinhard Zumkeller, Jul 30 2014
STATUS
approved

Search completed in 0.009 seconds