[go: up one dir, main page]

login
Search: a232103 -id:a232103
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sum of spans of 2n-step polygons on square lattice.
(Formerly M2971)
+10
2
0, 1, 3, 14, 70, 370, 2028, 11452, 66172, 389416, 2326202, 14070268, 86010680, 530576780, 3298906810, 20653559846, 130099026600, 823979294284, 5244162058026, 33523117491920, 215150177410088, 1385839069134800, 8956173544332434, 58056703069399056, 377396656568011618, 2459614847765495754, 16068572108927106202
OFFSET
1,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. J. Guttmann and I. G. Enting, The size and number of rings on the square lattice, J. Phys. A 21 (1988), L165-L172.
EXAMPLE
From Andrey Zabolotskiy, Nov 09 2018: (Start)
There are no 2-step polygons (conventionally).
For n=2, the only 4-step polygon is a 1 X 1 square having span 1, so a(2)=1.
For n=3, the only 6-step polygon is a 2 X 1 domino which can be rotated 2 ways having spans 2 and 1, so a(3) = 2+1 = 3.
For n=4, there are the following 8-step polygons:
a 3 X 1 stick which can be rotated 2 ways having spans 3 and 1;
an L-tromino which can be rotated 4 ways, all having span 2;
a 2 X 2 square, having span 2.
So a(4) = 3 + 1 + 4*2 + 2 = 14.
For n=5, there are the following 10-step polygons:
a 4 X 1 stick which can be rotated 2 ways having spans 4 and 1;
an L-tetromino which can be rotated 2 ways with span 2 and 2 more ways with span 3, plus reflections;
a T-tetromino which can be rotated 2 ways with span 2 and 2 more ways with span 3;
an S-tetromino which can be rotated 2 ways having spans 3 and 2, plus reflections;
a 3 X 2 rectangle which can be rotated 2 ways having spans 3 and 2;
a 3 X 2 rectangle without one of its angular squares having same counts as L-tetromino.
So a(5) = 4 + 1 + 2 * 2*2*(2+3) + 2*(2+3) + 2*(3+2) + 3 + 2 = 70.
(End)
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Name corrected, more terms from Andrey Zabolotskiy, Nov 09 2018
STATUS
approved
Number of fixed polyominoes without holes that have a width and height of n.
+10
2
1, 5, 106, 6074, 943340, 419355340, 554485727288, 2208574156731474, 26609978139626497670, 973224195603423767343946, 108342096917091380628767818812, 36763211016528549310068224122368860, 38044287043749436284594644308861499605492
OFFSET
1,2
COMMENTS
Equivalently, the number of cycles on an (n+1) X (n+1) grid that touch each of the four outside edges.
LINKS
Andrey Zabolotskiy, Table of n, a(n) for n = 1..16
Anthony J. Guttmann and Iwan Jensen, Effect of Confinement: Polygons in Strips, Slabs and Rectangles, in: Polygons, Polyominoes and Polycubes, LNP 775, Springer, 2009. See Table 10.2 on p. 239.
CROSSREFS
Main diagonal of A232103.
Cf. A268404.
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Oct 04 2017
STATUS
approved
Number of fixed polyominoes without holes that have a width of n and height of 3.
+10
2
1, 15, 106, 582, 2952, 14488, 69982, 335356, 1600624, 7624266, 36279784, 172546968, 820420150, 3900386212, 18541702744, 88140749906, 418982915000, 1991645550032, 9467293435654, 45002706816100, 213919774521224, 1016864234903874, 4833646472767104
OFFSET
1,2
LINKS
FORMULA
a(n) = 10*a(n-1) - 34*a(n-2) + 49*a(n-3) - 29*a(n-4) + 2*a(n-5) + 10*a(n-6) - 5*a(n-7) - 2*a(n-8) for n > 9.
G.f.: x*(1 + 5*x - 10*x^2 - 17*x^3 + 30*x^4 - 5*x^5 - 14*x^6 + x^7 + x^8)/((1 - x)*(1 - 2*x - x^2)*(1 - 7*x + 12*x^2 - 7*x^3 + 3*x^4 + 2*x^5)).
MATHEMATICA
LinearRecurrence[{10, -34, 49, -29, 2, 10, -5, -2}, {1, 15, 106, 582, 2952, 14488, 69982, 335356, 1600624}, 30] (* Harvey P. Dale, Jan 22 2024 *)
PROG
(PARI) Vec((1 + 5*x - 10*x^2 - 17*x^3 + 30*x^4 - 5*x^5 - 14*x^6 + x^7 + x^8)/((1 - x)*(1 - 2*x - x^2)*(1 - 7*x + 12*x^2 - 7*x^3 + 3*x^4 + 2*x^5)) + O(x^40));
CROSSREFS
Row 3 of A232103.
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Oct 04 2017
STATUS
approved

Search completed in 0.007 seconds