[go: up one dir, main page]

login
Search: a231900 -id:a231900
     Sort: relevance | references | number | modified | created      Format: long | short | data
Omit the 1's from Rowland's sequence f(n) - f(n-1) = gcd(n,f(n-1)), where f(1) = 7.
+10
11
5, 3, 11, 3, 23, 3, 47, 3, 5, 3, 101, 3, 7, 11, 3, 13, 233, 3, 467, 3, 5, 3, 941, 3, 7, 1889, 3, 3779, 3, 7559, 3, 13, 15131, 3, 53, 3, 7, 30323, 3, 60647, 3, 5, 3, 101, 3, 121403, 3, 242807, 3, 5, 3, 19, 7, 5, 3, 47, 3, 37, 5, 3, 17, 3, 199, 53, 3, 29, 3, 486041, 3, 7, 421, 23
OFFSET
1,1
COMMENTS
Rowland proves that each term is prime. He says it is likely that all odd primes occur.
In the first 5000 terms, there are 965 distinct primes and 397 is the least odd prime that does not appear. - T. D. Noe, Mar 01 2008
In the first 10000 terms, the least odd prime that does not appear is 587, according to Rowland. - Jonathan Sondow, Aug 14 2008
Removing duplicates from this sequence yields A221869. The duplicates are A225487. - Jonathan Sondow, May 03 2013
LINKS
Jean-Paul Delahaye, Déconcertantes conjectures, Pour la science, 5 (2008), 92-97.
Brian Hayes, Pumping the Primes, bit-player, 19 August 2015.
Ivars Peterson, A New Formula for Generating Primes, The Mathematical Tourist.
Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc. 29 (No. 1, 2008), p. 50 (Abstract 1035-11-986).
Eric S. Rowland, A natural prime-generating recurrence, arXiv:0710.3217 [math.NT], 2007-2008.
Eric S. Rowland, A natural prime-generating recurrence, J. of Integer Sequences 11 (2008), Article 08.2.8.
Eric Rowland, A simple recurrence that produces complex behavior ..., A New Kind of Science blog.
Eric Rowland, Prime-Generating Recurrence, Wolfram Demonstrations Project, 2008.
Eric Rowland, A Bizarre Way to Generate Primes, YouTube video, 2023.
Vladimir Shevelev, Generalizations of the Rowland theorem, arXiv:0911.3491 [math.NT], 2009-2010.
Wikipedia, Formula for primes.
FORMULA
Denote by Lpf(n) the least prime factor of n. Then a(n) = Lpf( 6-n+Sum_{i=1..n-1} a(i) ). - Vladimir Shevelev, Mar 03 2010
a(n) = A168008(2*n+4) (conjectured). - Jon Maiga, May 20 2021
a(n) = A020639(A190894(n)). - Seiichi Manyama, Aug 11 2023
EXAMPLE
f(n) = 7, 8, 9, 10, 15, 18, 19, 20, ..., so f(n) - f(n-1) = 1, 1, 1, 5, 3, 1, 1, ... and a(n) = 5, 3, ... .
From Vladimir Shevelev, Mar 03 2010: (Start)
a(1) = Lpf(6-1) = 5;
a(2) = Lpf(6-2+5) = 3;
a(3) = Lpf(6-3+5+3) = 11;
a(4) = Lpf(6-4+5+3+11) = 3;
a(5) = Lpf(6-5+5+3+11+3) = 23. (End)
MAPLE
A137613_list := proc(n)
local a, c, k, L;
L := NULL; a := 7;
for k from 2 to n do
c := igcd(k, a);
a := a + c;
if c > 1 then L:=L, c fi;
od;
L end:
A137613_list(500000); # Peter Luschny, Nov 17 2011
MATHEMATICA
f[1] = 7; f[n_] := f[n] = f[n - 1] + GCD[n, f[n - 1]]; DeleteCases[Differences[Table[f[n], {n, 10^6}]], 1] (* Alonso del Arte, Nov 17 2011 *)
PROG
(Haskell)
a137613 n = a137613_list !! (n-1)
a137613_list = filter (> 1) a132199_list
-- Reinhard Zumkeller, Nov 15 2013
(PARI)
ub=1000; n=3; a=9; while(n<ub, m=a\n; d=factor((m-1)*n-1)[1, 1]; print1(d, ", "); n=n+((d-1)\(m-1)); a=m*n; ); \\ Daniel Constantin Mayer, Aug 31 2014
(Python)
from itertools import count, islice
from math import gcd
def A137613_gen(): # generator of terms
a = 7
for n in count(2):
if (b:=gcd(a, n)) > 1: yield b
a += b
A137613_list = list(islice(A137613_gen(), 20)) # Chai Wah Wu, Mar 14 2023
CROSSREFS
f(n) = f(n-1) + gcd(n, f(n-1)) = A106108(n) and f(n) - f(n-1) = A132199(n-1).
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Jan 29 2008, Jan 30 2008
STATUS
approved

Search completed in 0.005 seconds