[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a231477 -id:a231477
     Sort: relevance | references | number | modified | created      Format: long | short | data
(3,7)-primes (defined in Comments).
+10
2
2, 3, 5, 7, 11, 19, 23, 29, 37, 43, 47, 53, 61, 67, 71, 79, 89, 103, 107, 127, 137, 149, 151, 173, 179, 191, 197, 211, 229, 233, 257, 271, 277, 281, 331, 337, 347, 373, 379, 383, 397, 401, 439, 443, 457, 467, 487, 499, 523, 547, 557, 571, 599, 607, 653, 673
OFFSET
1,1
COMMENTS
Let V = (b(1), b(2), ..., b(k)), where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p a V-prime if the digits of p in base b(1) spell a prime in each of the bases b(2), ..., b(k).
LINKS
MATHEMATICA
{b1, b2} = {3, 7};
u = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &]; (* A231477 *)
v = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b2], b1]] &]; (* A262837 *)
w = Intersection[u, v]; (* A262838 *)
(* Peter J. C. Moses, Sep 27 2015 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Nov 09 2015
STATUS
approved
{3,7}-primes (defined in Comments).
+10
2
2, 3, 23, 47, 53, 61, 67, 71, 89, 127, 137, 191, 397, 443, 701, 1031, 1117, 1223, 1499, 1549, 1579, 1621, 1699, 1933, 1951, 2129, 2207, 2311, 2381, 2473, 2521, 2671, 2731, 2753, 2833, 3011, 3019, 3061, 3967, 4051, 4093, 4127, 4229, 4397, 4457, 4943, 5023
OFFSET
1,1
COMMENTS
Let S = {b(1), b(2), ..., b(k)}, where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p an S-prime if the digits of p in base b(i) spell a prime in each of the bases b(j) in S, for i = 1..k. Equivalently, p is an S-prime if p is a strong-V prime (defined at A262729) for every permutation of the vector V = (b(1), b(2), ..., b(k)).
LINKS
MATHEMATICA
{b1, b2} = {3, 7};
u = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &]; (* A231477 *)
v = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b2], b1]] &]; (* A262837 *)
w = Intersection[u, v]; (* A262838 *)
(* Peter J. C. Moses, Sep 27 2015 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Nov 09 2015
STATUS
approved

Search completed in 0.004 seconds