[go: up one dir, main page]

login
Search: a238390 -id:a238390
     Sort: relevance | references | number | modified | created      Format: long | short | data
Catalan numbers (A000108) interpolated with 0's.
+10
58
1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, 0, 429, 0, 1430, 0, 4862, 0, 16796, 0, 58786, 0, 208012, 0, 742900, 0, 2674440, 0, 9694845, 0, 35357670, 0, 129644790, 0, 477638700, 0, 1767263190, 0, 6564120420, 0, 24466267020, 0, 91482563640, 0, 343059613650, 0
OFFSET
0,5
COMMENTS
Inverse binomial transform of A001006.
The Hankel transform of this sequence gives A000012 = [1,1,1,1,1,...].
Counts returning walks (excursions) of length n on a 1-d integer lattice with step set {+1,-1} which stay in the chamber x >= 0. - Andrew V. Sutherland, Feb 29 2008
Moment sequence of the trace of a random matrix in G=USp(2)=SU(2). If X=tr(A) is a random variable (A distributed according to the Haar measure on G) then a(n) = E[X^n]. - Andrew V. Sutherland, Feb 29 2008
Essentially the same as A097331. - R. J. Mathar, Jun 15 2008
Number of distinct proper binary trees with n nodes. - Chris R. Sims (chris.r.sims(AT)gmail.com), Jun 30 2010
-a(n-1), with a(-1):=0, n>=0, is the Z-sequence for the Riordan array A049310 (Chebyshev S). For the definition see that triangle. - Wolfdieter Lang, Nov 04 2011
See A180874 (also A238390 and A097610) and A263916 for relations to the general Bell A036040, cycle index A036039, and cumulant expansion polynomials A127671 through the Faber polynomials. - Tom Copeland, Jan 26 2016
A signed version is generated by evaluating polynomials in A126216 that are essentially the face polynomials of the associahedra. This entry's sequence is related to an inversion relation on p. 34 of Mizera, related to Feynman diagrams. - Tom Copeland, Dec 09 2019
REFERENCES
Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Ch. 49, Hemisphere Publishing Corp., 1987.
LINKS
V. E. Adler, Set partitions and integrable hierarchies, arXiv:1510.02900 [nlin.SI], 2015.
Martin Aigner, Catalan and other numbers: a recurrent theme, in Algebraic Combinatorics and Computer Science, a Tribute to Gian-Carlo Rota, pp.347-390, Springer, 2001.
Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
Radica Bojicic, Marko D. Petkovic and Paul Barry, Hankel transform of a sequence obtained by series reversion II-aerating transforms, arXiv:1112.1656 [math.CO], 2011.
Colin Defant, Troupes, Cumulants, and Stack-Sorting, arXiv:2004.11367 [math.CO], 2020.
Isaac DeJager, Madeleine Naquin, Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, arXiv:1110.6638 [math.NT], 2011.
Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
Kiran S. Kedlaya and Andrew V. Sutherland, HyperellipticCurves, L-Polynomials, and Random Matrices. In: Arithmetic, Geometry, Cryptography, and Coding Theory: International Conference, November 5-9, 2007, CIRM, Marseilles, France. (Contemporary Mathematics; v.487)
S. Mizera, Combinatorics and Topology of Kawai-Lewellen-Tye Relations, arXiv:1706.08527 [hep-th], 2017.
E. Rowland, Pattern avoidance in binary trees, J. Comb. Theory A 117 (6) (2010) 741-758, Sec. 3.1.
Yidong Sun and Fei Ma, Minors of a Class of Riordan Arrays Related to Weighted Partial Motzkin Paths, arXiv:1305.2015 [math.CO], 2013.
Y. Wang and Z.-H. Zhang, Combinatorics of Generalized Motzkin Numbers, J. Int. Seq. 18 (2015) # 15.2.4.
FORMULA
a(2*n) = A000108(n), a(2*n+1) = 0.
a(n) = A053121(n,0).
(1/Pi) Integral_{0 .. Pi} (2*cos(x))^n *2*sin^2(x) dx. - Andrew V. Sutherland, Feb 29 2008
G.f.: (1 - sqrt(1 - 4*x^2)) / (2*x^2) = 1/(1-x^2/(1-x^2/(1-x^2/(1-x^2/(1-...(continued fraction). - Philippe Deléham, Nov 24 2009
G.f. A(x) satisfies A(x) = 1 + x^2*A(x)^2. - Vladimir Kruchinin, Feb 18 2011
E.g.f.: I_1(2x)/x Where I_n(x) is the modified Bessel function. - Benjamin Phillabaum, Mar 07 2011
Apart from the first term the e.g.f. is given by x*HyperGeom([1/2],[3/2,2], x^2). - Benjamin Phillabaum, Mar 07 2011
a(n) = Integral_{x=-2..2} x^n*sqrt((2-x)*(2+x)))/(2*Pi). - Peter Luschny, Sep 11 2011
E.g.f.: E(0)/(1-x) where E(k) = 1-x/(1-x/(x-(k+1)*(k+2)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 05 2013
G.f.: 3/2- sqrt(1-4*x^2)/2 = 1/x^2 + R(0)/x^2, where R(k) = 2*k-1 - x^2*(2*k-1)*(2*k+1)/R(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 28 2013 (warning: this is not the g.f. of this sequence, R. J. Mathar, Sep 23 2021)
G.f.: 1/Q(0), where Q(k) = 2*k+1 + x^2*(1-4*(k+1)^2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 09 2014
a(n) = n!*[x^n]hypergeom([],[2],x^2). - Peter Luschny, Jan 31 2015
a(n) = 2^n*hypergeom([3/2,-n],[3],2). - Peter Luschny, Feb 03 2015
a(n) = ((-1)^n+1)*2^(2*floor(n/2)-1)*Gamma(floor(n/2)+1/2)/(sqrt(Pi)* Gamma(floor(n/2)+2)). - Ilya Gutkovskiy, Jul 23 2016
D-finite with recurrence (n+2)*a(n) +4*(-n+1)*a(n-2)=0. - R. J. Mathar, Mar 21 2021
From Peter Bala, Feb 03 2024: (Start)
a(n) = 2^n * Sum_{k = 0..n} (-2)^(-k)*binomial(n, k)*Catalan(k+1).
G.f.: 1/(1 + 2*x) * c(x/(1 + 2*x))^2 = 1/(1 - 2*x) * c(-x/(1 - 2*x))^2 = c(x^2), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)
EXAMPLE
G.f. = 1 + x^2 + 2*x^4 + 5*x^6 + 14*x^8 + 42*x^10 + 132*x^12 + 429*x^14 + ...
From Gus Wiseman, Nov 14 2022: (Start)
The a(0) = 1 through a(8) = 14 ordered binary rooted trees with n + 1 nodes (ranked by A358375):
o . (oo) . ((oo)o) . (((oo)o)o) . ((((oo)o)o)o)
(o(oo)) ((o(oo))o) (((o(oo))o)o)
((oo)(oo)) (((oo)(oo))o)
(o((oo)o)) (((oo)o)(oo))
(o(o(oo))) ((o((oo)o))o)
((o(o(oo)))o)
((o(oo))(oo))
((oo)((oo)o))
((oo)(o(oo)))
(o(((oo)o)o))
(o((o(oo))o))
(o((oo)(oo)))
(o(o((oo)o)))
(o(o(o(oo))))
(End)
MAPLE
with(combstruct): grammar := { BB = Sequence(Prod(a, BB, b)), a = Atom, b = Atom }: seq(count([BB, grammar], size=n), n=0..47); # Zerinvary Lajos, Apr 25 2007
BB := {E=Prod(Z, Z), S=Union(Epsilon, Prod(S, S, E))}: ZL:=[S, BB, unlabeled]: seq(count(ZL, size=n), n=0..45); # Zerinvary Lajos, Apr 22 2007
BB := [T, {T=Prod(Z, Z, Z, F, F), F=Sequence(B), B=Prod(F, Z, Z)}, unlabeled]: seq(count(BB, size=n+1), n=0..45); # valid for n> 0. # Zerinvary Lajos, Apr 22 2007
seq(n!*coeff(series(hypergeom([], [2], x^2), x, n+2), x, n), n=0..45); # Peter Luschny, Jan 31 2015
# Using function CompInv from A357588.
CompInv(48, n -> ifelse(irem(n, 2) = 0, 0, (-1)^iquo(n-1, 2))); # Peter Luschny, Oct 07 2022
MATHEMATICA
a[n_?EvenQ] := CatalanNumber[n/2]; a[n_] = 0; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Sep 10 2012 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ BesselI[ 1, 2 x] / x, {x, 0, n}]]; (* Michael Somos, Mar 19 2014 *)
bot[n_]:=If[n==1, {{}}, Join@@Table[Tuples[bot/@c], {c, Table[{k, n-k-1}, {k, n-1}]}]];
Table[Length[bot[n]], {n, 10}] (* Gus Wiseman, Nov 14 2022 *)
Riffle[CatalanNumber[Range[0, 50]], 0, {2, -1, 2}] (* Harvey P. Dale, May 28 2024 *)
PROG
(Sage)
def A126120_list(n) :
D = [0]*(n+2); D[1] = 1
b = True; h = 2; R = []
for i in range(2*n-1) :
if b :
for k in range(h, 0, -1) : D[k] -= D[k-1]
h += 1; R.append(abs(D[1]))
else :
for k in range(1, h, 1) : D[k] += D[k+1]
b = not b
return R
A126120_list(46) # Peter Luschny, Jun 03 2012
(Magma) &cat [[Catalan(n), 0]: n in [0..30]]; // Vincenzo Librandi, Jul 28 2016
(Python)
from math import comb
def A126120(n): return 0 if n&1 else comb(n, m:=n>>1)//(m+1) # Chai Wah Wu, Apr 22 2024
CROSSREFS
Cf. A126216.
The unordered version is A001190, ranked by A111299.
These trees (ordered binary rooted) are ranked by A358375.
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Mar 06 2007
EXTENSIONS
An erroneous comment removed by Tom Copeland, Jul 23 2016
STATUS
approved
Triangle read by rows: T(n,k) is number of Motzkin paths of length n and having k horizontal steps.
+10
22
1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 2, 0, 6, 0, 1, 0, 10, 0, 10, 0, 1, 5, 0, 30, 0, 15, 0, 1, 0, 35, 0, 70, 0, 21, 0, 1, 14, 0, 140, 0, 140, 0, 28, 0, 1, 0, 126, 0, 420, 0, 252, 0, 36, 0, 1, 42, 0, 630, 0, 1050, 0, 420, 0, 45, 0, 1, 0, 462, 0, 2310, 0, 2310, 0, 660, 0, 55, 0, 1, 132, 0, 2772, 0
OFFSET
0,8
COMMENTS
Row sums are the Motzkin numbers (A001006). Column 0 gives the aerated Catalan numbers (A000108).
Let P_n(x) = Sum_{k=0..n} T(n,k)*x^k. P_0(x) = 1, P_1(x) = x, P_n(x) = x*P_(n-1)(x) + Sum_{j=0..n-2} P_j(x)*P_(n-2-j)(x); essentially the same as A124027. - Philippe Deléham, Oct 03 2007
G. J. Chaitin's numbers of s-expressions of size n are given by the coefficients of polynomials p(k, x) satisfying: p(k, x) = Sum_{j=2..k-1} p(j, x)*p(k-j, x). The coefficients of these polynomials also give (essentially) the triangle shown here. - Roger L. Bagula, Oct 31 2006
Exponential Riordan array [Bessel_I(1,2x)/x,x]. - Paul Barry, Mar 24 2010
Diagonal sums are the aerated large Schroeder numbers. - Paul Barry, Apr 21 2010
Non-vanishing antidiagonals are rows of A060693. - Tom Copeland, Feb 03 2016
These polynomials are related to the Gegenbauer polynomials which in turn are specializations of the Jacobi polynomials. The o.g.f. of the Gegenbauer polynomials is 1 / [1-2tx+x^2]^a. For the generating function Gb(x,h1,h2,a) = [x / (1 + h1 x + h2 x^2)]^a, the compositional inverse in x is Gbinv(x,h1,h2,a) = [(1-h1*y) - sqrt[(1-h1*y)^2-4h2*y^2]]/(2*h2*y) with y = x^(1/a). The polynomials of this entry are generated by Gbinv(x,t,1,1). The Legendre polynomials are related to the o.g.f. Gb(x,-2t,1,1/2). Cf. A121448. - Tom Copeland, Feb 07 2016
The bivariate o.g.f. in Copeland's Jan 29 2016 formulas can be related to conformal mappings of the complex plane and a solution of the dKP hierarchy. Cf. p. 24 of the Takebe et al. paper. - Tom Copeland, May 30 2018
REFERENCES
G. J. Chaitin, Algorithmic Information Theory, Cambridge Univ. Press, 1987, page 169.
LINKS
N. Alexeev, J. Andersen, R. Penner, and P. Zograf, Enumeration of chord diagrams on many intervals and their non-orientable analogs, arXiv:1307.0967 [math.CO], 2013-2014.
M. Artioli, G. Dattoli, S. Licciardi, and S. Pagnutti, Motzkin Numbers: an Operational Point of View, arXiv:1703.07262 [math.CO], 2017, (reverse of Table 1 on p. 3).
Marilena Barnabei, Flavio Bonetti, and Niccolò Castronuovo, Motzkin and Catalan Tunnel Polynomials, J. Int. Seq., Vol. 21 (2018), Article 18.8.8.
Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
Colin Defant, Postorder Preimages, arXiv preprint arXiv:1604.01723 [math.CO], 2016.
G. Ellingsrud, Elliptic curves--Basics, course notes, Fall 2014.
P. Landweber, D. Ravenel, and R. Stong, Periodic cohomology theories defined by elliptic curves
Piera Manara and Claudio Perelli Cippo, The fine structure of 4321 avoiding involutions and 321 avoiding involutions, PU. M. A. Vol. 22 (2011), 227-238. - From N. J. A. Sloane, Oct 13 2012
T. Takebe, Lee-Peng Teo, and A. Zabrodin, Löwner equations and dispersionless hierarchies, arXiv:math/0605161 [math.CV], p. 24, 2006.
FORMULA
G.f.: [1-tz-sqrt(1-2tz+t^2*z^2-4z^2)]/(2z^2).
T(n, k) = n!/[k!((n-k)/2)!((n-k)/2-1)! ] = A055151(n, (n-k)/2) if n-k is a nonnegative even number; otherwise T(n, k) = 0.
T(n, k) = C(n, k)*C((n-k)/2)*(1+(-1)^(n-k))/2 if k <= n, 0 otherwise. - Paul Barry, May 18 2005
T(n,k) = A121448(n,k)/2^k. - Philippe Deléham, Aug 17 2006
Sum_{k=0..n} T(n,k)*2^k = A000108(n+1). - Philippe Deléham, Aug 22 2006
Sum_{k=0..n} T(n,k)*3^k = A002212(n+1). - Philippe Deléham, Oct 03 2007
G.f.: 1/(1-x*y-x^2/(1-x*y-x^2/(1-x*y-x^2/.... (continued fraction). - Paul Barry, Dec 15 2008
Sum_{k=0..n} T(n,k)*4^k = A005572(n). - Philippe Deléham, Dec 03 2009
T(n,k) = A007318(n,k)*A126120(n-k). - Philippe Deléham, Dec 12 2009
From Tom Copeland, Jan 23 2016: (Start)
E.g.f.: M(x,t) = e^(xt) AC(t) = e^(xt) I_1(2t)/t = e(xt) * e.g.f.(A126120(t)) = e^(xt) Sum_{n>=0} t^(2n)/(n!(n+1)!) = exp[t P(.,x)].
The e.g.f. of this Appell sequence of polynomials P(n,x) is e^(xt) times the e.g.f. AC(t) of the aerated Catalan numbers A126120. AC(t) = I_1(2t)/t, where I_n(x) = T_n(d/dx) I_0(x) are the modified Bessel functions of the first kind and T_n, the Chebyshev polynomials of the first kind.
P(n,x) has the lowering and raising operators L = d/dx = D and R = d/dD log{M(x,D)} = x + d/dD log{AC(D)} = x + Sum_{n>=0} c(n) D^(2n+1)/(2n+1)! with c(n) = (-1)^n A180874(n+1), i.e., L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x).
(P(.,x) + y)^n = P(n,x+y) = Sum_{k=0..n} binomial(n,k) P(k,x) y^(n-k) = (b.+x+y)^n, where (b.)^k = b_k = A126120(k).
Exp(b.D) e^(xt) = exp[(x+b.)t] = exp[P(.,x)t] = e^(b.t) e^(xt) = e^(xt) AC(t).
See p. 12 of the Alexeev et al. link and A055151 for a refinement.
Shifted o.g.f: G(x,t) = [1-tx-sqrt[(1-tx)^2-4x^2]] / 2x = x + t x^2 + (1+t) x^3 + ... has the compositional inverse Ginv(x,t) = x / [1 + tx + x^2] = x - t x^2 +(-1+t^2) x^3 + (2t-t^3) x^4 + (1-3t^2+t^4) x^5 + ..., a shifted o.g.f. for the signed Chebyshev polynomials of the second kind of A049310 (cf. also the Fibonacci polynomials of A011973). Then the inversion formula of A134264, involving non-crossing partitions and free probability with their multitude of interpretations (cf. A125181 also), can be used with h_0 = 1, h_1 = t, and h_2 = 1 to interpret the coefficients of the Motzkin polynomials combinatorially.
(End)
From Tom Copeland, Jan 29 2016: (Start)
Provides coefficients of the inverse of f(x) = x / [1 + h1 x + h2 x^2], a bivariate generating function of A049310 (mod signs).
finv(x) = [(1-h1*x) - sqrt[(1-h1*x)^2-4h2*x^2]]/(2*h2*x) = x + h1 x^2 + (h2 + h1^2) x^3 + (3 h1 h2 + h1^3) x^4 + ... is a bivariate o.g.f. for this entry.
The infinitesimal generator for finv(x) is g(x) d/dx with g(x) = 1 /[df(x)/dx] = x^2 / [(f(x))^2 (1 - h2 x^2)] = (1 + h1 x + h2 x^2)^2 / (1 - h2 x^2) so that [g(x)d/dx]^n/n! x evaluated at x = 0 gives the row polynomials FI(n,h1,h2) of the compositional inverse of f(x), i.e., exp[x g(u)d/du] u |_(u=0) = finv(x) = 1 / [1 -x FI(.,h1,h2)]. Cf. A145271. E.g.,
FI(0,h1,h2) = 0
FI(1,h1,h2) = 1
FI(2,h1,h2) = 1 h1
FI(3,h1,h2) = 1 h2 + 1 h1^2
FI(4,h1,h2) = 3 h2 h1 + 1 h1^3
FI(5,h1,h2) = 2 h2^2 + 6 h2 h1^2 + 1 h1^4
FI(6,h1,h2) = 10 h2^2 h1 + 10 h2 h1^3 + 1 h1^5.
And with D = d/dh1, FI(n+1, h1,h2) = MT(n,h1,h2) = (b.y + h1)^n = Sum_{k=0..n} binomial(n,k) b(k) y^k h1^(n-k) = exp[(b.y D] (h1)^n = AC(y D) (h1)^n, where b(k) = A126120(k), y = sqrt(h2), and AC(t) is defined in my Jan 23 formulas above. Equivalently, AC(y D) e^(x h1) = exp[x MT(.,h1,h2)].
The MT polynomials comprise an Appell sequence in h1 with e.g.f. e^(h1*x) AC(xy) = exp[x MT(.,h1,h2)] with lowering operator L = d/dh1 = D, i.e., L MT(n,h1,h2) = dMT(n,h1,h2)/dh1 = n MT(n-1,h1,h2) and raising operator R = h1 + dlog{AC(y L)}/dL = h1 + Sum_{n>=0} c(n) h2^(n+1) D^(2n+1)/(2n+1)! = h1 + h2 d/dh1 - h2^2 (d/dh1)^3/3! + 5 h2^3 (d/dh1)^5/5! - ... with c(n) = (-1)^n A180874(n+1) (consistent with the raising operator in the Jan 23 formulas).
The compositional inverse finv(x) is also obtained from the non-crossing partitions of A134264 (or A125181) with h_0 = 1, h_1 = h1, h_2 = h2, and h_n = 0 for all other n.
See A238390 for the umbral compositional inverse in h1 of MT(n,h1,h2) and inverse matrix.
(End)
From Tom Copeland, Feb 13 2016: (Start)
z1(x,h1,h2) = finv(x), the bivariate o.g.f. above for this entry, is the zero that vanishes for x=0 for the quadratic polynomial Q(z;z1(x,h1,h2),z2(x,h1,h2)) = (z-z1)(z-z2) = z^2 - (z1+z2) z + (z1*z2) = z^2 - e1 z + e2 = z^2 - [(1-h1*x)/(h2*x)] z + 1/h2, where e1 and e2 are the elementary symmetric polynomials for two indeterminates.
The other zero is given by z2(x,h1,h2) = (1 - h1*x)/(h2*x) - z1(x,h1,h2) = [1 - h1*x + sqrt[(1-h1*x)^2 - 4 h2*x^2]] / (2h2*x).
The two are the nontrivial zeros of the elliptic curve in Legendre normal form y^2 = z (z-z1)(z-z2), (see Landweber et al., p. 14, Ellingsrud, and A121448), and the zeros for the Riccati equation z' = (z - z1)(z - z2), associated to soliton solutions of the KdV equation (see Copeland link).
(End)
Comparing the shifted o.g.f. S(x) = x / (1 - h_1 x + h_2 x^2) for the bivariate Chebyshev polynomials S_n(h_1,h_2) of A049310 with the shifted o.g.f. H(x) = x / ((1 - a x)(1 - b x)) for the complete homogeneous symmetric polynomials H_n(a,b) = (a^(n+1)-b^(n+1)) / (a - b) shows that S_n(h_1,h_2) = H_n(a,b) for h_1 = a + b and h_2 = ab and, conversely, a = (h_1 + sqrt(h_1^2 - 4 h_2)) / 2 and b = (h_1 - sqrt(h_1^2 - 4 h_2)) / 2. The compositional inverse about the origin of S(x) gives a bivariate o.g.f. for signed Motzkin polynomials M_n(h_1,h_2) of this entry, and that of H(x) gives one for signed Narayana polynomials N_n(a,b) of A001263, thereby relating the bivariate Motzkin and Narayana polynomials by the indeterminate transformations. E.g., M_2(h_1,h_2) = h_2 + h_1^2 = ab + (a + b)^2 = a^2 + 3 ab + b^2 = N_2(a,b). - Tom Copeland, Jan 27 2024
EXAMPLE
Triangle begins:
1;
0, 1;
1, 0, 1;
0, 3, 0, 1;
2, 0, 6, 0, 1;
0, 10, 0, 10, 0, 1;
5, 0, 30, 0, 15, 0, 1;
Row n has n+1 terms.
T(4,2)=6 because we have HHUD, HUDH, UDHH, HUHD, UHDH, UHHD, where U=(1,1), D=(1,-1) and H=(1,0).
MAPLE
G:=(1-t*z-sqrt(1-2*t*z+t^2*z^2-4*z^2))/2/z^2:
Gser:=simplify(series(G, z=0, 16)): P[0]:=1:
for n from 1 to 13 do P[n]:=sort(coeff(Gser, z^n)) od:
seq(seq(coeff(t*P[n], t^k), k=1..n+1), n=0..13);
# Maple program for the triangular array:
T:=proc(n, k) if n-k mod 2 = 0 and k<=n then n!/k!/((n-k)/2)!/((n-k)/2+1)! else 0 fi end: TT:=(n, k)->T(n-1, k-1): matrix(10, 10, TT);
MATHEMATICA
T[n_, k_]:=If[n>=k&&EvenQ[n-k], n!/(k!((n-k)/2)!((n-k)/2+1)!), 0];
Flatten[Table[T[n, k], {n, 0, 20}, {k, 0, n}]] (* Peter J. C. Moses, Apr 06 2013 *)
T[n_, k_] := If[OddQ[n - k], 0, Binomial[n, k] CatalanNumber[(n - k)/2]]; (* Peter Luschny, Jun 06 2018 *)
CROSSREFS
Cf. A001006, A000108. A124027 is an essentially identical triangle.
Cf. A001263.
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 30 2004
STATUS
approved
Decimal expansion of first zero of BesselJ(1,z).
+10
18
3, 8, 3, 1, 7, 0, 5, 9, 7, 0, 2, 0, 7, 5, 1, 2, 3, 1, 5, 6, 1, 4, 4, 3, 5, 8, 8, 6, 3, 0, 8, 1, 6, 0, 7, 6, 6, 5, 6, 4, 5, 4, 5, 2, 7, 4, 2, 8, 7, 8, 0, 1, 9, 2, 8, 7, 6, 2, 2, 9, 8, 9, 8, 9, 9, 1, 8, 8, 3, 9, 3, 0, 9, 5, 1, 9, 0, 1, 1, 4, 7, 0, 2, 1, 4, 1, 1, 2, 8, 7, 4, 7, 5, 7, 4, 2, 3, 1, 2, 6, 7, 2, 4, 4, 7
OFFSET
1,1
COMMENTS
Also the first root of the sinc(2,x) function, that is, the radial component of the 2D Fourier transform of a 2-dimensional unit disc. - Stanislav Sykora, Nov 14 2013
Also the first root of the derivative of BesselJ_0. - Jean-François Alcover, Jul 01 2015
EXAMPLE
3.8317059702075123156...
MATHEMATICA
BesselJZero[1, 1] // N[#, 105]& // RealDigits // First (* Jean-François Alcover, Feb 06 2013 *)
PROG
(PARI) solve(x=3, 4, besselj(1, x)) \\ Charles R Greathouse IV, Feb 19 2014
(PARI) besseljzero(1) \\ Charles R Greathouse IV, Aug 06 2022
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jan 21 2006
STATUS
approved
Lassalle's sequence connected with Catalan numbers and Narayana polynomials.
+10
12
1, 1, 5, 56, 1092, 32670, 1387815, 79389310, 5882844968, 548129834616, 62720089624920, 8646340208462880, 1413380381699497200, 270316008395632253340, 59800308109377016336155, 15151722444639718679892150, 4359147487054262623576455600
OFFSET
1,3
COMMENTS
Defined by the recurrence formula in Theorem 1, page 2 of Lasalle.
From Tom Copeland, Jan 26 2016: (Start)
Let G(t) = Sum_{n>=0} t^(2n)/(n!(n+1)!) = exp(c.t) be the e.g.f. of the aerated Catalan numbers c_n of A126120.
R = x + H(D) = x + d/dD log[G(D)] = x + D - D^3/3! + 5 D^5/5! - 56 D^7/7! + ... = x + e^(r. D) generates a signed, aerated version of this entry's sequence a(n), (r.)^(2n+1) = r(2n+1) = (-1)^n a(n+1) for n>=0 and r(0) = a(0) = 0, and is, with D = d/dx, the raising operator for the Appell polynomials P(n,x) of A097610, where P(n,x) = (c. + x)^n = Sum{k=0 to n} binomial(n,k) c_k x^(n-k) with c_k = A126120(k), i.e., R P(n,x) = P(n+1,x).
d/dt log[G(t)] = e^(r.t) = e^(q.t) / e^(c.t) = Ev[c. e^(c.t)] / Ev[e^(c.t)] = e^(q.t) e^(d.t) = [Sum_{n>=0} 2n t^(2n-1)/(n!(n+1)!)] / [Sum_{n>=0} t^(2n)/(n!(n+1)!)] with Ev[..] denoting umbral evaluation, so q(n) = c(n+1) = A126120(n+1) and d(2n) = (-1)^n A238390(n) and vanishes otherwise. Then (r. + c.)^n = q(n) = Sum_{k=0..n} binomial(n,k) r(k) c(n-k) and (q. + d.)^n = r(n), relating A180874, A126120 (A000108), and A238390 through binomial convolutions.
The sequence can also be represented in terms of the Faber polynomials of A263916 as a(n) = |(2n-1)! F(2n,0,b(2),0,b(4),0,..)| = |h(2n)| where b(2n) = 1/(n!(n + 1)!) = A126120(2n)/(2n)! = A000108(n)/(2n)!, giving h(0) = 1, h(1) = 0, h(2) = 1, h(3) = 0, h(4) = -1, h(5) = 0, h(6) = 5, h(7) = 0, h(8) = -56, ..., implying, among other relations, that A000108(n/2)= A126120(n) = Bell(n,0,h(2),0,h(4),...), the Bell polynomials of A036040 which reduce to A257490 in this case.
(End)
From Colin Defant, Sep 06 2018: (Start)
a(n) is the number of pairs (rho,r), where rho is a matching on [2n] and r is an acyclic orientation of the crossing graph of rho in which the block containing 1 is the only source (see the Josuat-Verges paper or the Defant-Engen-Miller paper for definitions).
a(n) is the number of permutations of [2n-1] that have exactly 1 preimage under West's stack-sorting map.
a(n) is the number of valid hook configurations of permutations of [2n-1] that have n-1 hooks (see the paper by Defant, Engen, and Miller for definitions).
Say a binary tree is full if every vertex has either 0 or 2 children. If u is a left child in such a tree, then we can start at the sibling of u and travel down left edges until reaching a leaf v. Call v the leftmost nephew of u. A decreasing binary plane tree on [m] is a binary plane tree labeled with the elements of [m] in which every nonroot vertex has a label that is smaller than the label of its parent. a(n) is the number of full decreasing binary plane trees on [2n-1] in which every left child has a label that is larger than the label of its leftmost nephew.
(End)
LINKS
Colin Defant, Descents in t-Sorted Permutations, arXiv:1904.02613 [math.CO], 2019.
Colin Defant, Michael Engen, and Jordan A. Miller, Stack-sorting, set partitions, and Lassalle's sequence, arXiv:1809.01340 [math.CO], 2018.
Colin Defant, Catalan Intervals and Uniquely Sorted Permutations, arXiv:1904.02627 [math.CO], 2019.
Colin Defant, Troupes, Cumulants, and Stack-Sorting, arXiv:2004.11367 [math.CO], 2020. See p. 37.
Matthieu Josuat-Verges, Cumulants of the q-semicircular law, Tutte polynomials, and heaps, arXiv:1203.3157 [math.CO], 2012.
Michel Lassalle, Catalan numbers and a new integer sequence, arXiv:1009.4225 [math.CO], 2010-2012.
Michel Lassalle, Two integer sequences related to Catalan numbers, Journal of Combinatorial Theory, Series A, Volume 119, Issue 4, May 2012, Pages 923-935.
Hanna Mularczyk, Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations, arXiv:1908.04025 [math.CO], 2019.
FORMULA
a(n) = (-1)^(n-1) * (C(n)+Sum_{j=1..n-1} (-1)^j *binomial(2n-1,2j-1) * a(j) *C(n-j)), where C() = A000108(). - R. J. Mathar, Apr 17 2011, corrected by Vaclav Kotesovec, Feb 28 2014
E.g.f.: Sum_{k>=0} a(k)*x^(2*k+2)/(2*k+2)! = log(x/BesselJ(1,2*x)). - Sergei N. Gladkovskii, Dec 28 2011
a(n) ~ (n!)^2 / (sqrt(Pi) * n^(3/2) * r^n), where r = BesselJZero[1, 1]^2/16 = 0.917623165132743328576236110539381686855099186384686... - Vaclav Kotesovec, added Feb 28 2014, updated Mar 01 2014
Define E(m,n) by E(1,1) = 1, E(n,n) = 0 for n > 1, and E(m,n) = Sum_{j=1..m} Sum_{i=1..n-m-1} binomial(n-m-1,i-1) * F_j(i+j-1) * F_{m-j}(n-j-i) for 0 <= m < n, where F_m(n) = Sum_{j=m..n} E_j(n). Then a(n) = F_0(2n-1). - Colin Defant, Sep 06 2018
MAPLE
A000108 := proc(n) binomial(2*n, n)/(1+n) ; end proc:
A180874 := proc(n) option remember; if n = 1 then 1; else A000108(n)+add((-1)^j*binomial(2*n-1, 2*j-1)*procname(j)*A000108(n-j), j=1..n-1) ; %*(-1)^(n-1) ; end if; end proc: # R. J. Mathar, Apr 16 2011
MATHEMATICA
nmax=20; a = ConstantArray[0, nmax]; a[[1]]=1; Do[a[[n]] = (-1)^(n-1)*(Binomial[2*n, n]/(n+1) + Sum[(-1)^j*Binomial[2n-1, 2j-1]*a[[j]]* Binomial[2*(n-j), n-j]/(n-j+1), {j, 1, n-1}]), {n, 2, nmax}]; a (* Vaclav Kotesovec, Feb 28 2014 *)
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Sep 22 2010
STATUS
approved
First column of triangle A103364, which equals the matrix inverse of the Narayana triangle (A001263).
+10
10
1, -1, 2, -7, 39, -321, 3681, -56197, 1102571, -27036487, 810263398, -29139230033, 1238451463261, -61408179368043, 3513348386222286, -229724924077987509, 17023649385410772579, -1419220037471837658603, 132236541042728184852942, -13690229149108218523467549
OFFSET
1,3
LINKS
FORMULA
From Paul D. Hanna, Jan 31 2009: (Start)
G.f.: A(x) = 1/B(x) where A(x) = Sum_{n>=0} (-1)^n*a(n)*x^n/[n!*(n+1)!/2^n] and B(x) = Sum_{n>=0} x^n/[n!*(n+1)!/2^n].
G.f. satisfies: A(x) = 1/F(x*A(x)) and F(x) = 1/A(x*F(x)) where F(x) = Sum_{n>=0} A155926(n)*x^n/[n!*(n+1)!/2^n].
G.f. satisfies: A(x) = 1/G(x/A(x)) and G(x) = 1/A(x/G(x)) where G(x) = Sum_{n>=0} A155927(n)*x^n/[n!*(n+1)!/2^n]. (End)
a(n) ~ (-1)^(n+1) * c * n! * (n-1)! * d^n, where d = 4/BesselJZero[1, 1]^2 = 0.2724429913055159309179376055957891881897555639652..., and c = 9.11336321311226744479181866135367355200240221549667284076... = BesselJZero[1, 1]^2 / (4*BesselJ[2, BesselJZero[1, 1]]). - Vaclav Kotesovec, Mar 01 2014, updated Apr 01 2018
EXAMPLE
From Paul D. Hanna, Jan 31 2009: (Start)
G.f.: A(x) = 1 - x + 2*x^2/3 - 7*x^3/18 + 39*x^4/180 - 321*x^5/2700 +...
G.f.: A(x) = 1/B(x) where:
B(x) = 1 + x + x^2/3 + x^3/18 + x^4/180 + x^5/2700 +...+ x^n/[n!*(n+1)!/2^n] +... (End)
MATHEMATICA
Table[(-1)^((n-1)/2) * (CoefficientList[Series[x/BesselJ[1, 2*x], {x, 0, 40}], x])[[n]] * ((n+1)/2)! * ((n-1)/2)!, {n, 1, 41, 2}] (* Vaclav Kotesovec, Mar 01 2014 *)
PROG
(PARI) a(n)=if(n<1, 0, (matrix(n, n, m, j, binomial(m-1, j-1)*binomial(m, j-1)/j)^-1)[n, 1])
(PARI) {a(n)=local(B=sum(k=0, n, x^k/(k!*(k+1)!/2^k))+x*O(x^n)); polcoeff(1/B, n)*n!*(n+1)!/2^n} \\ Paul D. Hanna, Jan 31 2009
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 02 2005
STATUS
approved
Triangle read by rows: T(n,k) = binomial(2*n,2*k)*binomial(2*n-2*k,n-k)/(n+1-k) for 0<=k<=n.
+10
2
1, 1, 1, 2, 6, 1, 5, 30, 15, 1, 14, 140, 140, 28, 1, 42, 630, 1050, 420, 45, 1, 132, 2772, 6930, 4620, 990, 66, 1, 429, 12012, 42042, 42042, 15015, 2002, 91, 1, 1430, 51480, 240240, 336336, 180180, 40040, 3640, 120, 1, 4862, 218790, 1312740, 2450448, 1837836, 612612, 92820, 6120, 153, 1
OFFSET
0,4
LINKS
FORMULA
T(n,k) = A001263(n+1,k+1)*A000108(n)/A000108(k) for 0 <= k <= n.
T(n,k) = binomial(2*n,2*k)*A000108(n-k) for 0 <= k <= n.
T(n,k) = A039599(n,k)*binomial(n+1+k,2*k+1)/(n+1-k) for 0 <= k <= n.
Recurrences: T(n,0) = A000108(n) and (1) T(n,k) = T(n,k-1)*(n+1-k)*(n+2-k)/ (2*k*(2*k-1)) for 0 < k <= n, (2) T(n,k) = T(n-1,k-1)*n*(2*n-1)/(k*(2*k-1)).
The row polynomials p(n,x) = Sum_{k=0..n} T(n,k)*x^(2*k) satisfy the recurrence equation p"(n,x) = 2*n*(2*n-1)*p(n-1,x) with initial value p(0,x) = 1 ( n > 0, p" is the second derivative of p ), and Sum_{n>=0} p(n,x)*t^(2*n)/((2*n)!) = cosh(x*t)*(Sum_{n>=0} A000108(n)*t^(2*n)/((2*n)!)).
Conjectures: (1) Sum_{k=0..n} (-1)^k*T(n,k)*A238390(k) = A000007(n);
(2) Antidiagonal sums equal A001003(n);
(3) Matrix inverse equals T(n,k)*A103365(n+1-k).
Sum_{k=0..n} (n+1-k)*T(n,k) = A002426(2*n) = A082758(n).
Sum_{k=0..n} T(n,k)*A000108(k) = A000108(n)*A000108(n+1) = A005568(n).
Matrix product: Sum_{i=0..n} T(n,i)*T(i,k) = T(n,k)*A000108(n+1-k) for 0<=k<=n.
T(n,k) = A097610(2*n,2*k) for 0 <= k <= n.
Sum_{k=0..n} (k+1)*T(n,k)*A000108(k) = binomial(2*n+1,n)*A000108(n).
EXAMPLE
Triangle begins:
n\k: 0 1 2 3 4 5 6 7 8 . . .
0: 1
1: 1 1
2: 2 6 1
3: 5 30 15 1
4: 14 140 140 28 1
5: 42 630 1050 420 45 1
6: 132 2772 6930 4620 990 66 1
7: 429 12012 42042 42042 15015 2002 91 1
8: 1430 51480 240240 336336 180180 40040 3640 120 1
etc.
T(3,2) = binomial(6,4) * binomial(2,1) / (3+1-2) = 15 * 2 / 2 = 15. - Indranil Ghosh, Feb 15 2017
CROSSREFS
Row sums are A026945.
Triangle related to A000108, A001006, A001263, and A039599.
KEYWORD
nonn,tabl
AUTHOR
Werner Schulte, Jan 05 2017
STATUS
approved

Search completed in 0.013 seconds