[go: up one dir, main page]

login
Search: a224762 -id:a224762
     Sort: relevance | references | number | modified | created      Format: long | short | data
Denominator of fractional curling number of binary expansion of n.
+10
4
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 2, 3, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 6, 2, 1, 1, 1, 5, 1, 1, 3, 2, 1, 1, 3, 5, 1
OFFSET
0,6
COMMENTS
See A224762 for definition and Maple program.
LINKS
EXAMPLE
1, 1, 1, 2, 2, 3/2, 1, 3, 3, 4/3, 2, 2, 2, 3/2, 1, 4, 4, 5/4, 5/3, 2, 2, 5/2, 5/3, 3, 3, 4/3, 2, 2, 2, 3/2, 1, 5, 5, 6/5, 3/2, 2, 2, 2, 3/2, 3, 3, 5/3, 3, 2, 2, 2, 3/2, 4, 4, 5/4, 5/3, 2, 2, 5/2, 2, 3, 3, 4/3, 2, 2, 2, 3/2, 1, 6, 6, 7/6, 3/2, 2, ...
For example, 18 = 10010 in binary has fractional curling number 5/4.
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Apr 26 2013
STATUS
approved
Numerator of fractional curling number of binary expansion of n.
+10
3
1, 1, 1, 2, 2, 3, 1, 3, 3, 4, 2, 2, 2, 3, 1, 4, 4, 5, 5, 2, 2, 5, 5, 3, 3, 4, 2, 2, 2, 3, 1, 5, 5, 6, 3, 2, 2, 2, 3, 3, 3, 5, 3, 2, 2, 2, 3, 4, 4, 5, 5, 2, 2, 5, 2, 3, 3, 4, 2, 2, 2, 3, 1, 6, 6, 7, 3, 2, 2, 2, 7, 3, 3, 7, 5, 2, 2, 5, 7, 4
OFFSET
0,4
COMMENTS
See A224762 for definition and Maple program.
LINKS
EXAMPLE
1, 1, 1, 2, 2, 3/2, 1, 3, 3, 4/3, 2, 2, 2, 3/2, 1, 4, 4, 5/4, 5/3, 2, 2, 5/2, 5/3, 3, 3, 4/3, 2, 2, 2, 3/2, 1, 5, 5, 6/5, 3/2, 2, 2, 2, 3/2, 3, 3, 5/3, 3, 2, 2, 2, 3/2, 4, 4, 5/4, 5/3, 2, 2, 5/2, 2, 3, 3, 4/3, 2, 2, 2, 3/2, 1, 6, 6, 7/6, 3/2, 2, ...
For example, 18 = 10010 in binary has fractional curling number 5/4.
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Apr 26 2013
STATUS
approved
Define a sequence of rationals by S(1)=1; for n>=1, write S(1),...,S(n) as XY^k, Y nonempty, where the fractional exponent k is maximized, and set S(n+1)=k; sequence gives denominators of S(1), S(2), ...
+10
2
1, 1, 1, 1, 2, 1, 2, 1, 5, 1, 4, 1, 2, 3, 1, 3, 2, 4, 7, 1, 5, 12, 1, 3, 4, 7, 7, 1, 5, 4, 5, 2, 15, 1, 6, 1, 2, 5, 7, 13, 1, 5, 4, 13, 1, 4, 3, 23, 1, 4, 2, 14, 1, 4, 2, 4, 1, 4, 2, 4, 1, 53, 1, 6, 29, 1, 3, 20, 1, 3, 3, 1, 3, 3, 1, 14, 24, 1, 6, 15, 1, 3, 9, 1, 3, 3, 4, 29, 1, 5, 24, 14, 16, 1, 5, 5, 1, 3, 13, 1, 3, 3, 16
OFFSET
1,5
COMMENTS
k is the "fractional curling number" of S(1),...,S(n). The infinite sequence S(1), S(2), ... is a fractional analog of Gijswijt's sequence A090822.
For the first 1000 terms, 1 <= S(n) <= 2. Is this always true?
See A224762 for definition and Maple program.
LINKS
Allan Wilks, Table of n, a(n) for n = 1..10000 (terms 1..1000 from N. J. A. Sloane)
Allan Wilks, Table of n, S(n) for n = 1..10000 [The first 1000 terms were computed by N. J. A. Sloane]
EXAMPLE
The sequence S(1), S(2), ... begins 1, 1, 2, 1, 3/2, 1, 3/2, 2, 6/5, 1, 5/4, 1, 3/2, 4/3, 1, 4/3, 3/2, 5/4, 8/7, 1, 6/5, 13/12, 1, 4/3, 5/4, 8/7, 9/7, 1, 6/5, 5/4, 6/5, 3/2, 16/15, 1, 7/6, 1, 3/2, 6/5, 8/7, 14/13, 1, 6/5, 5/4, 16/13, 1, 5/4, 4/3, 24/23, 1, 5/4, 3/2, 15/14, 1, 5/4, 3/2, 7/4, ...
MAPLE
See A224762.
CROSSREFS
Cf. A224762 (numerators), A090822.
KEYWORD
nonn,frac
AUTHOR
Conference dinner party, Workshop on Challenges in Combinatorics on Words, Fields Institute, Toronto, Apr 22 2013, entered by N. J. A. Sloane
STATUS
approved

Search completed in 0.006 seconds